Installing MCMS

Installing MCMS

1

MCMS

1.1

Overview

Installing MCMS (Read)

2.1
2.2
2.3

Basic Requirements (Read)
Acquiring the Codebase (Read)
Reading MCMS datasets

Installing MCMS (Make)

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Basic Requirements (Make)
Acquiring the Codebase (Make)
Configure Setup

Do Setup

Configure Center Finding

Do Center Finding

Detecting and Dealing with Hotspots
Configure Tracking

Do Tracking

3.10 Configure Attribution

3.11

Do Attribution

22
24
29
33
34
38
40
42
43
45
47

3.12 Determine Intensity

3.13 Reformat Output

Supplemental

41
4.2
4.3
44
4.5
4.6
4.7
4.8
4.9

Appendix: rf_nra2_setup.py
Appendix: setup_lodfile.txt

Appendix: rf_nra2_cfpy

Appendix: Center Finding Diagnostics
Appendix: rf_nra2_tf.py

Appendix: Tracking Diagnostics
Appendex: rf_nra2_af.py

Appendex: Attribution Diagnostics

Conventions

410 Do Do and Fixes

48
49

51
59
70
87
91
104
108
122
123
124

MCMS

Installing MCMS - 4

Overview

Created: October 23,2012
Updated: October 23,2012

N* 55N
Vi

Z
“ ///////

The NASA MAP Climatology of Midlatitude Cyclones (MCMS) is a collection of software tools that finds, tracks and delineates midlatitude cyclones in gridded data. This
results in a detailed life history for each captured cyclone including estimates of its position, trajectory and appearance.

% 2 ’/////%/(
Nl G \\\\\\\\/

Installing MCMS - 5

Installing MCMS (Read)

Basic Requirements (Read)

Created: October 23,2012
Updated: October 23,2012

Basic Requirements

@ python’

Python related:

* Python (version >= 2.6). Most os-x (Apple) and linux setups come with python preinstalled. Note that earlier versions (< 2.6) or the newest 3.x branch will cause
problems with MCMS.

+ SciPy (pronounced "Sigh Pie") python routines for mathematics, science, and engineering.

* Numpy a fundamental package for scientific computing with Python (usually installed with SciPy)..

+ python-dateutil extends the standard datetime module (usually installed with SciPy).

* netcdf4-python reads and writes netCDF 3 and 4 files.

* http://matplotlib.org and http:/matplotlib.org/basemap/

* matplotlib a python 2D plotting library.

+ Basemap a mapping toolkit for matplotlib.

* Cython allows python to be rewritten and compliled as C for speed.

Additional Software:
+ netCDF4 self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.
*+ The netCDF Operators (NCO) command-line programs for manipulating netCDF files. This is optional.

Installing MCMS - 7

http://www.python.org/
http://www.scipy.org
http://numpy.scipy.org
http://labix.org/python-dateutil
http://code.google.com/p/netcdf4-python/
http://matplotlib.org
http://matplotlib.org/basemap/
http://cython.org
http://www.unidata.ucar.edu/software/netcdf/
http://nco.sourceforge.net

* Generic Mapping Tools (GMT) for tools for manipulating geographic and Cartesian data sets. This is optional.
In os-x (Apple) all this can be easily installed using macports (note this will require the installation of Xcode):

$ portinstall python27
$ port select --set python python27
$ portinstall py27-dateutil
$ portinstall netcdf +netcdf4
$ portinstall py27-numpy
$ portinstall py27-netcdf4
$ portinstall py27-matplotlib
$ portinstall py27-matplotlib-basemap
$ portinstall py27-scipy
$ portinstall py27-cython

Optional
$ portinstall nco

$ portinstall gmt4

Something simular should work with apt-get, Synaptic Package Manager etc. on linux.

Installing MCMS - 8

http://gmt.soest.hawaii.edu
http://www.macports.org
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12

Acquiring the Codebase (Read)

Created: October 23,2012
Updated: October 23,2012

¥ Bitbucket Dashboard Repositories ~

@ mcms'“make &, Clone - «C Fork >2 Compare Ty Pull Request
& mcmsprojact Y Folowing B2 Invite
(&)
Ovarviaw Source Commits Pull Requests Downloads &
U cefault « mems_make /
. cfg
| rf files
- util
[¢] moms_attrioute_finder.py 35.1 KB 4 days ago Updated fles
mcms_center_finder.py 1138 KB 4 days ago Updated tes
m BS.S KB 4 days ago Updated Sles
m 750KB 4 days ago Updated Hes
mems_track_finder.py M4AKB 4 days ago Updated tes

The MCMS software is keptin a distributed source control management tool (Mercurial) and the public repository is hosted on Bitbucket .
To obtain the software for creating new MCMS datasets use (MCMS_HOME defined below):

$ cd /MCMS HOME
$ hg clone https://mcmsproject@bitbucket.org/mcmsproject/mcms make

or download the files directly with a browser here. The main advantage of using the Mercurial repository is the ability to pull fixes/updates and merge them with the code
you've been working on, whereas use of the zip files requires a manual merge.

Note there are a variety of GUI frontends for Mercurial, | use SourceTree.

Installing MCMS - 9

http://mercurial.selenic.com
https://bitbucket.org
https://bitbucket.org/mcmsproject/mcms_make/downloads
http://www.sourcetreeapp.com

| usually organize MCMS into three directories: 1) A directory called mcms (MCMS_HOME) where the MCMS software is installed. 2) A directory called data (DATA_HOME)
where the SLP data is stored (a separate subdirectory for each model). and 3) A directory called output (OUTPUT_HOME) where MCMS stores its output (a separate
subdirectory for each model). For example:

MCMS_HOME:

/Users/mbauer/mcms
/cfg
/util
/doc
/rf files

DATA_HOME

/Volumes/Scratch/data
/erad0
/merrac
/nra?2
/giss
/experiment b
/experiment b

OUTPUT_HOME

/Volumes/SSD/output
/erad0
/erad0 files
/merrac
/merrac_files
/nra?2

Installing MCMS - 10

/nra2_ files
/giss
/giss _files

Installing MCMS - 11

Reading MCMS datasets

Basic formatting

MCMS databases are specially formatted ASCII texts files. There are generally two types available: 1) Files containing just cyclone locations and information concerning
how individual cyclones centers are linked into cyclone tracks. These files have a"_tracks.txt" extension. 2) Files containing all of the previous information plus data
concerning the size and shape of each cyclone center. These files have a"_att.txt" extension.

Not surprisingly "_att.txt" files are much larger and complicated than are "_tracks.ixt" files.

Formatting of "_tracks.txt" files

All"_tracks.txt" files have the following format (one cyclone center per line, written in time sequential order.)
YYYY MM DD HH JD ColLat Lon GridID GridSLP RegSLP GridLAP Flags Intensity Dissimilarity UCI USI

For example:
2000 01 01 00 2451544500 15099 10333 0001769 0971899 0976996 00612 00 00 0001 20000101001500010249 19991224181400034749

Each field is fixed size and space delimited with the following format and characteristics (note a zero preceding a format statement means zero padding to preserve the
fixed size of a given variable (e.g., 1 might be written as 001).

YYYY
Year
C/Python format: %04d
Fortran format: i4.4
Example: 2000
Read as: 2000
Note:
MM
Month

Installing MCMS - 12

C/Python format: %02d
Fortran format: i2.2
Example: 01
Read as: 1
Note:
DD
Day
C/Python format: %02d
Fortran format: i2.2
Example: 01
Read as: 1
Note:
HH
Hour
C/Python format: %02d
Fortran format: i2.2
Example: 00
Read as: 0
Note: GMT/UTC
JD
Julian Date/Time
C/Python format: %10d
Fortran format: i10
Example: 2451544500
Read as: 2451544.5 (coverts to CE 2000 January 01 00:00:00.0 UTC)
Note: Scale by 0.001
Colat
Colatitude (Degrees, [0,180])
C/Python format: %05d
Fortran format: i5.5
Example: 15099
Read as: 150.99 (coverts to latitude of -60.99)

Installing MCMS - 13

Note: Scale by 0.01. Latitude =90.0 - (CoLat*0.01)
Lon
Longitude (Degrees, [0,360])
C/Python format: %05d
Fortran format: i5.5
Example: 10333
Read as: 103.33
Note: Scale by 0.01
GridID
Enumerated grid identifier (treat map as a matrix)
C/Python format: %07d
Fortran format: i7.7
Example: 0001769
Read as: 1769
Note: GridID = j*im + i where
j = row of the grid. Aside: j = GridID//im (where // is integer round-down division, e.g., 15//4 = 3)
i = column of the grid. Aside: i = GridID%im (where % is the modulo operator, e.g., 10%100 = 10)
im = total number of columns/longitude grids.
jm = total number of rows/latitude grid.
Valid values from 0 to (jm*im)-1. Aside: This follows the C-type array indexing that starts at 0.
GridSLP
Central sea level pressure (hPa)
C/Python format: %07d
Fortran format: i7.7
Example: 0971899
Read as: 971.899
Note: Scale by 0.001. Aside: This is the SLP value from the GridID associated with this center.
RegSLP
Regional average sea level pressure (hPa)
C/Python format: %07d
Fortran format: i7.7
Example: 0976996

Installing MCMS - 14

Read as: 976.996
Note: Scale by 0.001, zero if unassigned. Aside: This is the 9-pnt average SLP value surrounding the GridID associated with this center.
GridLAP
Laplacian of local SLP (hPa/’lat"2)
C/Python format: %05d
Fortran format: i5.5
Example: 00612
Read as: 0.612
Note: Scale by 0.001, zero if unassigned.
Flags
Useful flags to indicate information about this center.
C/Python format: %02d
Fortran format: i2.2
Example: 00
Read as: 0
Note: This is generally going to be setto 0 (passed). In the dumped and other diagnostic datasets this flag can take on other values.
Known Flags:
Passed all filters =0
Failed concavity/laplacian filter = 1
Failed regional minimum filter = 2
Failed troubled center filter = 3
Unassigned =4
Failed trackable center filter =5
Failed track lifetime filter = 6
Failed track travel filter = 7
Failed track minimum SLP filter = 8
Unassigned =9
Failed extratropical track filter = 10
Intensity
Cyclone intensity classification (see mcms_refine_centers.py for various means of ascribing this).
C/Python format: %02d
Fortran format: i2.2

Installing MCMS - 15

Example: 00
Read as: 0
Note: Zero if unassigned.
Dissimilarity
Weighted estimate of the dissimilarity or uncertainty of the link between this center and the previous center along this track.
C/Python format: %04d
Fortran format: i4.4
Example: 0001
Read as: 0.001
Note: Scale by 0.001, zero if unassigned.
UCl
Unique Center Identifier. This is formed using the positional information of the center.
C/Python format: %20s
Fortran format: i4.4
Example: 20000101001500010249
Read as: 20000101001500010249
Note: UCI ="%04d%02d%02d%02d%05d%05d" % (year,month,day,hour,round(Colat),round(Lon))
usSlI
Unique Storm Identifier which is simply the UCI of 1st center of the track to which this center belongs .
C/Python format: %20s
Fortran format: i4.4
Example: 19991224181400034749
Read as: 19991224181400034749
Note: All zeros if unassigned.

Thus each line can be read something like this: %04d %02d %02d %02d %10d %05d %05d %07d %07d %07d %05d %02d %02d %04d %20s %20s

Using MCMS provides tools to read "_tracks.txt" files

MCMS provides some tools for working with its datasets. These are written in the python programming language. The file mcms_simple_read.py is one of these programs.

Assuming that you have sufficient computer memory (for this example ~1 GB) you can simply concatenate all the "_tracks.ixt" files into a single file for processing (e.g., find .

Installing MCMS - 16

-name *tracks.txt* -print0 | xargs -0 cat>mcms_nra2_ 1979-2012_tracks.txt),

Note: The speicifc values shown for this example are subject to the exact options used to create the MCMS dataset and therefore may differ from those returned by the
dataset you have (even for the same SLP source).

mcms_simple_read.py contains a number of options:

MCMS provides a basic method for selecting specific temporal subsets from the data. These are not for setting ranges (e.g., 1 Jan 2001 to 25 Feb 2002), but for more
gross specifications (e.g., DJF or 12 UTC only data).

The defalutis to return everything (see mcms_simple_read.py or other options):

start_time ="YYYY MM DD HH SEASON"
end_time ="YYYY MM DD HH SEASON"

A simular facility exsists for the spatial domain. The defaultis to return everything (see mcms_simple_read.py or other options):
places = ["GLOBAL"]

We have created a couple of example uses that you can select from:
do_example =1 Do something with just the cyclone centers (ignore tracks and attribution)
= 2 Do something with cyclone tracks (ignore attribution)
= 3 Do something with attribution and cyclone centers (ignore tracks).
=4 Do something with attribution and tracks.
Here we'll start with do_example =1

The mecms_simple_read.py reads the filename/path of the data you wish to work with from the command line.
$ python mcms_simple_read.py /Scratchf/output/nra2/mcms_nra2_1979-2012_tracks.txt

Working on file: /Scratchf/output/nra2/mcms_nra2_1979-2012_tracks.txt
File Type: Centers

Installing MCMS - 17

SLP Data Source/Model: nra2
Centers Read 1420773
Number of unique dates/times: 48940

hhkkkhkkkhkkhkhkkhhkhhhkhhhhkkhhkkhhhkhkkhhhhhkkhkhkkhhkkkhkkhhkkhkkhkhkkhkhkkhkkkhkk*

Doing 1979010100 (1979 01 01 00 or 01 January 1979 00 UTC, DJF)
Centers Found: 41
Center GridID 9807 (Latitude: 79.75, Longitude: 36.24)
Center GridID 9551 (Latitude: 73.96, Longitude: 118.03)
Center GridID 9619 (Latitude: 75.36, Longitude: 287.92)

Setting do_example = 2 returns the same data in a track referenced manner.
$ python mcms_simple_read.py /Scratchf/output/nra2/mcms_nra2_1979-2012_tracks.txt

Working on file: /Scratchf/output/nra2/mcms_nra2_1979-2012_tracks.txt
File Type: Centers

SLP Data Source/Model: nra2

Centers Read: 1420773

Tracks Read: 104746

Number of unique dates/times: 48940

hhkkhhkhhkhhhhhkhhhhhkhhhhhhdhhhhhhhhdhhhhhdhhhhhdhhhdhhdhhhdhdthdrhdtrdx

Doing Track 19871011001375018999
Track Step 01 of 22
Center ID 2524 (Latitude: -46.59, Longitude: 190.53) (11 October 1987 00 UTC, SON)
Track Step 02 of 22
Center ID 2525 (Latitude: -46.75, Longitude: 192.65) (11 October 1987 06 UTC, SON)
Track Step 03 of 22
Center ID 2526 (Latitude: -46.95, Longitude: 195.27) (11 October 1987 12 UTC, SON)

Installing MCMS - 18

Track Step 04 of 22

Center ID 2527 (Latitude: -47.17, Longitude: 197.95) (11 October 1987 18 UTC, SON)
Track Step 05 of 22

Center ID 2528 (Latitude: -47.31, Longitude: 200.96) (12 October 1987 00 UTC, SON)
Track Step 06 of 22

Center ID 2529 (Latitude: -47.56, Longitude: 203.39) (12 October 1987 06 UTC, SON)
Track Step 07 of 22

Center ID 2388 (Latitude: -49.62, Longitude: 209.19) (12 October 1987 12 UTC, SON) * Min SLP
Track Step 08 of 22

Center ID 2389 (Latitude: -49.96, Longitude: 211.98) (12 October 1987 18 UTC, SON)
Track Step 09 of 22

Center ID 2248 (Latitude: -51.79, Longitude: 220.50) (13 October 1987 00 UTC, SON)
Track Step 10 of 22

Center ID 2250 (Latitude: -52.09, Longitude: 224.16) (13 October 1987 06 UTC, SON)
Track Step 11 of 22

Center ID 2393 (Latitude: -50.41, Longitude: 222.18) (13 October 1987 12 UTC, SON)
Track Step 12 of 22

Center ID 2524 (Latitude: -46.59, Longitude: 190.53) (11 October 1987 00 UTC, SON)
Track Step 13 of 22

Center ID 2525 (Latitude: -46.75, Longitude: 192.65) (11 October 1987 06 UTC, SON)
Track Step 14 of 22

Center ID 2526 (Latitude: -46.95, Longitude: 195.27) (11 October 1987 12 UTC, SON)
Track Step 15 of 22

Center ID 2527 (Latitude: -47.17, Longitude: 197.95) (11 October 1987 18 UTC, SON)
Track Step 16 of 22

Center ID 2528 (Latitude: -47.31, Longitude: 200.96) (12 October 1987 00 UTC, SON)
Track Step 17 of 22

Center ID 2529 (Latitude: -47.56, Longitude: 203.39) (12 October 1987 06 UTC, SON)
Track Step 18 of 22

Center ID 2388 (Latitude: -49.62, Longitude: 209.19) (12 October 1987 12 UTC, SON)
Track Step 19 of 22

Center ID 2389 (Latitude: -49.96, Longitude: 211.98) (12 October 1987 18 UTC, SON)

Installing MCMS - 19

Track Step 20 of 22

Center ID 2248 (Latitude: -51.79, Longitude: 220.50) (13 October 1987 00 UTC, SON)
Track Step 21 of 22

Center ID 2250 (Latitude: -52.09, Longitude: 224.16) (13 October 1987 06 UTC, SON)
Track Step 22 of 22

Center ID 2393 (Latitude: -50.41, Longitude: 222.18) (13 October 1987 12 UTC, SON)

The other do_example options require the "_att.ixt" type files.

Installing MCMS - 20

Installing MCMS (Make)

Installing MCMS - 21

Basic Requirements (Make)

Created: October 23,2012
Updated: October 23,2012

Basic Requirements

@ python’

Please note that many of these tools may already be installed on your machine. Where this is the case please be aware that MCMS development occurs on a machine with
fairly up-to-date versions of these tools, thus very out-of-date software may fail to work as intended or work at all with MCMS.

Python related:

* Python (version >= 2.6). Most os-x (Apple) and linux setups come with python preinstalled. Note that earlier versions (< 2.6) or the newest 3.x branch will cause
problems with MCMS.

+ SciPy (pronounced "Sigh Pie") python routines for mathematics, science, and engineering.

* Numpy a fundamental package for scientific computing with Python (usually installed with SciPy)..

+ python-dateutil extends the standard datetime module (usually installed with SciPy).

* netcdf4-python reads and writes netCDF 3 and 4 files.

* http://matplotlib.org and http:/matplotlib.org/basemap/

* matplotlib a python 2D plotting library.

+ Basemap a mapping toolkit for matplotlib.

* Cython allows python to be rewritten and compiled as C for speed.

Installing MCMS - 22

http://www.python.org/
http://www.scipy.org
http://numpy.scipy.org
http://labix.org/python-dateutil
http://code.google.com/p/netcdf4-python/
http://matplotlib.org
http://matplotlib.org/basemap/
http://cython.org

Additional Software:

+ netCDF4 self-describing, machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.
*+ The netCDF Operators (NCO) command-line programs for manipulating netCDF files. This is optional.

* Generic Mapping Tools (GMT) for tools for manipulating geographic and Cartesian data sets. This is optional.

* Mercurial the source control management tool used work with the MCMS repository. This is optional, but recommended.

In os-x (Apple) all this can be easily installed using macports (note this will require the installation of Xcode):

$ portinstall python27
$ port select --set python python27
$ portinstall py27-dateutil
$ port install netcdf +netcdf4
$ portinstall py27-numpy
$ portinstall py27-netcdfd
$ portinstall py27-matplotlib
$ portinstall py27-matplotlib-basemap
$ portinstall py27-scipy
$ portinstall py27-cython

Optional

$ portinstall nco

$ portinstall gmt4

$ portinstall mercurial

Something similar should work with apt-get, emerge, Synaptic Package Manager etc. on linux.

Installing MCMS - 23

http://www.unidata.ucar.edu/software/netcdf/
http://nco.sourceforge.net
http://gmt.soest.hawaii.edu
http://mercurial.selenic.com/
http://www.macports.org
https://itunes.apple.com/us/app/xcode/id497799835?ls=1&mt=12

Acquiring the Codebase (Make)

Created: October 23,2012
Updated: October 23,2012

Clone the Repository

¥ Bitbucket Dashboard Repositories ~

mecms, 'make &, Clone = G Fork >2 Compare Ty Pull Request
0 & mcmsprojact Y Folowing B2 Invite

Overview Source Commits Pull Requests Downloads ' ‘ &
U cefault « mems_make / ‘

. cfg

| f files

- util

1] moms_attribute_finder.py 351 KB 4 days ago Updated Sles
m 1138 KB 4 days ago Updated tes

[%] mems_refne_centers.py BS.S KB 4 days ago Updated Sles

[¢] mems_setup.py 750KB 4 days ago Updated fes
mems_track_finder.py M4AKB 4 days ago Updated tes

The MCMS software is keptin a distributed source control management tool (Mercurial) and the public repository is hosted on Bitbucket .

To obtain the software for creating new MCMS datasets use (MCMS_HOME is defined below):
$ mkdir MCMS_HOME
$ cd /MCMS HOME
$ hg clone https://mcmsproject@bitbucket.org/mecmsproject/mcms make

There is a "Clone" button on the bitbucket site that does this via your browser as well (see the red circle 1 above). Finally, you can simply download an archived file directly
with your browser here (see the red circle 2 above).

Installing MCMS - 24

http://mercurial.selenic.com
https://bitbucket.org
https://bitbucket.org/mcmsproject/mcms_make
https://bitbucket.org/mcmsproject/mcms_make/downloads

If you happen to have read/write permissions to the repository (you will need a bitbucket account and special permission for this) the clone command is slightly different:
$ hg clone https://bitbucket user name@bitbucket.org/mcmsproject/mcms make

File Structure

| usually organize MCMS into three directories: 1) A directory called mcms (MCMS_HOME) where the MCMS software is installed. 2) A directory called data (DATA_HOME)
where the SLP data is stored (a separate subdirectory for each model). and 3) A directory called output (OUTPUT_HOME) where MCMS stores its output (a separate

subdirectory for each model). For example:

MCMS HOME:
/Users/mbauer/mcms
/cfg
/util
/doc
/rf files

DATA HOME
/Volumes/Scratch/data

/erad0

/merrac

/nra2

/giss
/experiment b
/experiment b

OUTPUT HOME
/Volumes/SSD/output
/era40
/erad0 files
/merrac
/merrac_files

Installing MCMS - 25

/nra2
/nra2 files
/giss
/giss _files

Working with the Repository

N =3

(& mems (Mercurial)

IO QIR0 @ ItV

View Commit Update Rever: Shelve Add Remove Add/Remove Pull Push Branch Merge Tag Hg Flow Terminal Settings
FILE STATUS Current Branch Jump to: [$]
@ Working Copy Graph Descrip‘tion . Revision | Author : Date :
BRANCHES Merge 136 Mike Bauer <mpb... Mar 7, 2012 3:02 PM
- just tweaking for george 135 Mike Bauer <mpb... Mar 7, 2012 2:51 PM
5 default working on ccsm 134 Mike Bauer <mpb... Feb 16, 2012 1:36 PM
More tweaks 133 Mike Bauer <mpb... Feb9,2012 12:45 PM
BOOKMARKS Small update to allow for masking of all troubled centers and mapping... 132 Mike Bauer <mpb... Feb 8, 2012 5:08 PM
TAGS density update 131 “Mike Bauer <mb... Jan 12,2012 2:21 PM
Updates to density 130 Mike Bauer <mba... Jan 11, 2012 9:36 AM
REMOTES back up 129 “Mike Bauer <mb... Dec 20, 2011 3:17 PM
A defaute Simple mod 128 Mike Bauer <mba... Dec 20, 2011 12:59 PM
SHELVED Updates to density 127 Mike Bauer <mba... Dec9, 2011 8:06 PM
sync 126 “Mike Bauer <mb... Dec 6, 2011 3:20 PM
SUBREPOSITORIES
Tweaks to density 125 Mike Bauer <mba... Dec 6, 2011 2:03 PM
Revision: 0 NI 5 Lnes Y[oif parent___J[show Whiespace
102037 g Eg -hgignore
E:rlnb‘:‘:geea] s .a Modified file., 2 lines added ([TS0EIS)
Author: "Mike Bauer <mbauer@giss.nasa.gov>" Hunk 1: Lines 22-26 (previously 22-24)

Date: January 19, 2011 5:40:17 PM EST

Fixing center finder: Found that applying filters by gridID rather than
by sorted SLP causes patterns in the discards.

? Filename Path

(& .hgignore

@ mems_...late.py src/cfg

@ mems_...nder.py src

& mems_utilities.py src/util

& save_netcdf.py src/util

& mbaue...ettings mcms.bbprojectd
&> project...ectdata mems.bbprojectd
& mems_...defs.py src/cfg

&9 done.py src/util
& grid2ij.py src/util
@ ij2grid.py src/util

& tree_traversal.py src/util

(B [9 default @ Clean

22 22 sre/cfg/source_defs.py
2323 sre/test_run_file.py
24 24 sre/cfg/defs_defs.py
25 + src/cfg/directories_defs.py
26 + src/rf_nra2_cf .py
(Reverse Hunk) | Reverse Selected Lines

If all goes well you now have a copy of the current MCMS software in MCMS_HOME. In Mercurial speak this is your working copy of MCMS.

Assuming that you used the clone method, you will also find some ".hg" files in MCMS_HOME. This is your local repository in Mercurial speak.

Installing MCMS - 26

In essence the working copy contains the source files for MCMS, some of which may or may not have been altered by you, while the local repository remembers the state of
these files relative to its last check against the remote repository. In other words, Mercurial is a form of version control.

You can ignore all of this if you simply create special user files (such as the resource files explained later) to tell MCMS what you want to do, but otherwise leave the base
MCMS source code untouched. In this case you can update your MCMS code by create a new MCMS_HOME directory (of renaming the old one and creating a clean
directory with the original name) and re-clone the remote repository as described above. You can then simply copy your user files from the previous MCMS_HOME over to
the new one. This is also an easy way to test out a new version of MCMS without removing the version you are already using. In essence, this workflow is the same as just
downloading the archived file.

A different workflow is required to take advantage of the version control tools provided by Mercurial (see for a good overview). The advantage here is that Mercurial can pull
fixes/updates from the remote repository and then merge them with the code you've been working on (or assist you if complicated conflicts are detected). In this case you
need to be aware of the distinction between your working copy of MCMS and your local repository of MCMS as described above.

Let's take the simplest case, one in which you have not done anything to your working copy. In this case the working copy and the local repository are in sync. Now let's say
that there have been some updates in the remote repository. In this case your local repository is out of sync with the remote repository. You can always check the sync
status with the following command:

$ cd /MCMS_ HOME

$ hg status

At this point your local repository is unaware of its out-of-sync status with the remote repository. To fix this you need to "pull" the changes from the remote repository (see the
red circle 3 above if you're using a browser) :
$ hg pull https://mcmsproject@bitbucket.org/mcmsproject/mcms make

Your local repository is now in sync with the remote repository and is also aware that your working copy is out-of-sync with both repositories (use "hg status" to see this). It's
important to note that nothing has happened to your working files yet. In this special case (where you have not changed any file in the working directory) you can update
your working copy to match what is currently on the MCMS remote repository with the following command:'

$ hg update

There are a few extra steps ifin fact you have altered or added to your working copy of MCMS. In this case you need to tell your local repository that you want to keep these
changes/additions rather than simply having "hg update" over-right everything. First, ensure that you have told your local repository about any "added" (or "removed") files:
$ hg add my extrafile.py

Installing MCMS - 27

http://hgbook.red-bean.com/read/mercurial-in-daily-use.html

Issuing "hg status" will list the files that you have added/removed, plus one that simply differ with the local repository, and also a list of any unregistered files. Now you need
to "commit" to your changes to the local repository:

$ hg commit -m 'Some useful message about what is being committed.'

Your local repository is now aware of the changes that you have made and understand that you wish to retain them when it syncs with the remote repository. To do this
you'll need to "pull" any changes from the remote repository and then "update" your working copy as described above.

Unlike with the previous case it maybe that Mercurial will see that you and the remote repository have changed the same file. Mercurial is very good at merging these
changes by itself. If no warnings emerge then your working copy is now in sync with the remote repository with the addition of your changes. This is of course no guarantee
that your changes will work properly with the updated files. The best way to deal with any problems is to alter your changes to work with the whatever happened on the

remote repository side. If however, you feel you have found a bug, or have an improvement, please tell us aboutit. By default you are not allowed to "push" your changes
back up to the remote repository.

Note there are a variety of GUI front-ends for Mercurial, | use SourceTree (shown above).

Installing MCMS - 28

http://www.sourcetreeapp.com

Configure Setup

Created: October 23,2012
Updated: October 23,2012

State at 2011 01 01 00 UTC

90°N

60°N

30°N

00

30 o s presasansnnsnans,

60°S

180° 120°W 60°W 0° 60°E 120°E 180°

Il Il Il 1
960 968 976 984 992 1000 1008 1016 1024 1032 1040

Once you have downloaded the MCMS codebase these you'll need to setup the software.

Preparations

The MCMS software is designed to work with netCDF files. Sometimes these netCDF files differ from what MCMS expects; usually this involves attributes to key variables
(MCMS expects COARDS type entries). The easiest solution is to use the NCO operators (netCDF Operators) to add/delete/modify the netcdf files to conform with MCMS's
expectations. The following shell script gives an example of something that might be required:

#! /bin/csh

rescale from geopotential to elevation.

starting file='MERRA100.prod.assim.instM 3d _asm Cp.197911.SUB.nc'

Installing MCMS - 29

http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

working file='merrac_PHIS.nc'

tmp file='tmp.nc'

echo "Rescaling surface Geopotential Height to altitude"

ncap2 -0 -s "phis=phis*0.101971621297793" S$starting file $tmp file
mv $tmp file $working file

Itis also advantageous to rename your data files so that they contain the main variable as defined in the netcdffiles (e.g., slp_2008.nc). The python script
/MCMS_HOME/util/rename_files.py might be of help there.

To work as intended, MCMS requires more than just SLP data. Specifically, MCMS looks for two additional files: 1) surface topography or surface geopotential height (units
of meters) and 2) the land/sea mask (units of 1/0). These too should be named so that the file contains the primary variable short-name defined by netCDF. MCMS will
expect to find these files in a subdirectory of OUTPUT_HOME/model_files (e.g, /output/nra2_files). This subdirectory is where MCMS stores special utility files (lookup tables
etc.) pertaining to each model.

At this point you can also compile the Cython extensions (if not already done) found in /IMCMS_HOME/util.
Example:

$ cd /MCMS_HOME
$ python util/setup cython.py build ext --inplace

Configuration

Next you'll have to configure MCMS to work with your SLP data source/model. MCMS uses a set of basic configuration files (in the subdirectory /MCMS_HOME/cfg) which
serve the whole project. If your model is among those included with the MCMS codebase you should still double check the settings and it if your model is not listed then
you'll have to add new entries as follows:

In MCMS_HOME/cfg/mcms_source_base_defs.py. Add your model/SLP source definition to "selections".
Example:
selections = {"nra2" : ['"NCEP-DOE Reanalysis 2","nra2"]}

In MCMS_HOME/cfg/mecms_defs_base_defs.py. Add model to "selections." See /MCMS_HOME/util/defs.py for explanations of the keywords such as "tropical_filter", pay
special attention to setting "read_scale" if the SLP data is not in units of Pa.

Installing MCMS - 30

Example:
selections = {"nra2" : ['NRA2 settings", {"keep_log":False,"troubled_filter":True,"tropical_filter":True}]}

In /MCMS_HOME/cfg/mcms_ncvars_base_defs.py. Define the netcdf variables in the source SLP files. Pay attention to faux_grids, jd_fake, break_fname, calendar,
eq_grid_on_edge and file_separator (these terms are explained in mcms_ncvars_base_defs.py).
Example:
nra2_vars = base_vars.copy()
nra2_vars["var_slp"] = "mslp"

MCMS keeps most of the optional and variable aspects of using the code outside of the main codebase via resource files. These are usually stored in the subdirectory

IMCMS_HOME/rf_files. Two basic resource files you will find in this directory are data_root.py and output_root.py. These define the path to DATA_HOME and
OUTPUT_HOME respectively.

In / MCMS_HOME/T files/data_root.py. Set the root path to the SLP files you want to work with. This is a general/base directory rather than a specific one for a particular SLP
source. For example, if root = "/data/" then you might have something like this
/data
/model1
lexperiment a
lexperiment b
/model2

Ifinstead each SLP source has an unique path then add a line like "nra2_root = "path/to/the/directory/containing/the/nra2/data" such that
/nra2_root
Inra2

In /MCMS_HOME/rf_files/output_root.py. Set the path to where mcms will store its output. As with data_root.py this is the base directory rather than one for a specific model.
For example, if root = "/output/" then you will get something like this.
/output
/model1_files
/model1
/model2_files
/model2

Installing MCMS - 31

As with data_root.py unique paths can be added (e.g., nra2_root).

We are now ready to configure MCMS for your model/SLP source. This is done by running a setup program that reads the settings in /cfg and does a bunch of
pre-calculations and stores them in special files that MCMS can read in as it works. To do this we need to create a resource file for the setup routine.

Example (Note the -c "create" option):
$ cd /MCMS_ HOME
$ python mcms setup.py -c rf files/rf nra2 setup.py

Modify the new resource file by following the instructions embedded within it. See also IMCMS_HOME/docmcms_setup_notes.txt.

Debugging tips

It may be useful to set verbose = 1 in your setup resource file and running that directly.
$ python rf files/rf nra2 setup.py
This helps to uncover errors that are hard to diagnose otherwise.

It may be useful to redirect the log file created by mcms_setup.py to the screen rather than /OUTPUT_HOME/shared_path/setup_lodfile.txt. To do this change "keep_log = 1"
to "keep_log = 0" in mcms_setup.py
See also the variables:
skip time dat = 0
skip cf dat = 0
skip tf dat = 0
skip df dat = 0
skip s dat = 0
limit plots = 0
which can be used to skip over the parts of the setup that work while you debug parts that do not.

Installing MCMS - 32

Do Setup

Created: October 23,2012
Updated: October 23,2012

Troubled Grids

-~ -)
& g

Now we can run mcms_setup.py. For very high resolution models this may take awhile as mcms_setup.py is pre-calculating lookup tables for computationally expensive
terms.

Example (Note the lack of the "-c" option):
$ cd /MCMS_ HOME
$ python mcms setup.py rf files/rf model setup.py

Check the basic correctness after this is done by examining the log file located in /OUTPUT_HOME/model_files/setup_lodfile.txt. If save plotwas used there will be a
bunch of figures showing various masks etc. (the image above for example).

Add: Explain the troubled/problematic grids, the smoothing mask, the regional radius etc.

Installing MCMS - 33

Configure Center Finding

Created: October 23,2012
Updated: October 23,2012

Passed all filters NRA2 1979-2011

Passed all filters (Counts)

10 100 1000

Data Min = 1, Max = 6183

Assuming all this works you are now ready to do some cyclone finding. The first step is to run the center finder (mcms_center_finder.py). This works in a time independent
manner and simply locates candidate cyclone centers as SLP extrema and applies a series of filters to remove less likely cyclones (i.e., noise).

As with mcms_setup.py this requires that you create a resource file for the center finding routine.
Example (Note the -c "create" option and the _cf ending):

$ cd /MCMS_HOME
$ python mcms center finder.py -c rf files/rf nra2 cf.py

Installing MCMS - 34

As with mcms_setup.py we need to modify this file.

There are a few options of note in this resource file:

express: Setting this to non-zero tells MCMS to execute as quickly as possible. To do this, express disables all diagnostic overhead while running (e.g., statistics, plots)
and also forgoes saving discarded candidate centers.
fast_run: Setting this to non-zero tells MCMS to execute a single year (fast_year) of data as quickly as possible. To do this, fast run breaks fast_year into as many
pieces as there are available processors and then merges the results when done. This is usually done to test or debug.
skip_hours: Setting this to a non-empty array tells MCMS to skip some hours while running. For example, skip_hours =["03","09","15","21"] tells MCMS to ignore 3,9,15
and 21 UTC while running. This is useful when your SLP data have very high time sampling or when you'd like to speed up a climatology to see the results. In this latter
case you can rerun mcms_center_finder.py with the inverse skip_hours (saving off all "centers.txt" and diagnostics files to a separate locations first) and then use
/MCMS_HOME/util/mems_fix_fast.py to concatenate them into an unified record.
over_write_years: Setting this to a non-empty array tells MCMS to work with a subset of the years it found during the setup procedure. fast_run for example sets
over_write_years = [fast_year,fast_year].
save_stats: Setting this to non-zero tells MCMS to create some diagnostic statistics. These are stored in the subdirectory /OUTPUT_HOME/stats and include basic
information about how the center finding progressed. For example see *_cf base_ report.ixt, * centers_report.ixtand * _center_final_report_*txt here)
save_plots: Setting this to non-zero tells MCMS to create some diagnostic plots and/or netCDF files. These are stored in the subdirectory /OUTPUT_HOME/figs and
/OUTPUT_HOME/netcdf and documents the actions of specific filters and other settings with center finding. For example, see and the figure above.
progress: Setting this to a non-empty array tells MCMS to save special progress files to /OUTPUT_HOME. These can be read by the program
/MCMS_HOME/util/done.py to get a progress report on mcms_center_finder.py as it works.
For a short report
$ python done.py OUTPUT HOME

centers nra2 1979 progress.txt is 20.966% complete. Start: End: 2919 Now: 12
End: 2927 Now: 612
End: 2919 Now: 636
End: 2919 Now: 626
End: 2919 Now: 642
End: 2927 Now: 638
End: 2919 Now: 622
End: 2919 Now: 636
End: 2919 Now: 624
End: 2927 Now: 634

centers nra2 1980 progress.txt is 20.909% complete. Start:
centers_nra2 1981 progress.txt is 21.788% complete. Start:
centers _nra2 1982 progress.txt is 21.446% complete. Start:
centers nra2 1983 progress.txt is 21.994% complete. Start:
centers_nra2 1984 progress.txt is 21.797% complete. Start:
centers_nra2 1985 progress.txt is 21.309% complete. Start:
centers nra2 1986 progress.txt is 21.788% complete. Start:
centers_nra2 1987 progress.txt is 21.377% complete. Start:
centers_nra2 1988 progress.txt is 21.660% complete. Start:

O O O O O O O oo o o

Installing MCMS - 35

centers_nra2 1989 progress.txt is 22.473% complete. Start: 0 End: 2919 Now: 656

An alternative report is created by adding a character after the path OUTPUT HOME
$ python done.py OUTPUT HOME 1
Progress Report

Year 1979 [-——————- 21%] 614/2919
Year 1980 [-——————- 21%] 614/2927
Year 1981 [-——————- 22%] 638/2919
Year 1982 [-——————- 22%] 630/2919
Year 1983 [-——————- 22%] 646/2919
Year 1984 [-——————- 22%] 640/2927
Year 1985 [-——————- 21%] 624/2919
Year 1986 [-——————- 22%] 638/2919
Year 1987 [-——————- 21%] 626/2919
Year 1988 [-——————- 22%] 636/2927
Year 1989 [-———————- 23%] 658/2919

limit_sh and nh: Setting one of these to non-zero tells MCMS skip center finding in the other hemisphere.

screen_tropical_land: Setting this to non-zero tells MCMS to skip center finding over land (and some ocean) in parts of the tropics (a figure of this tropical_land_mask
is created by mcms_setup.py when save_plotis enabled).

drop_troubled: Setting this to non-zero tells MCMS to skip center finding troubled/problematic gridIDs.

pure_candidates: Setting this to non-zero tells MCMS save off the candidate centers if finds prior to applying the filters. This is useful for test and debugging.

smooth: Setting this to non-zero tells MCMS to apply smoothing to the SLP field prior to center finding. By default this smoothing takes the form of a 2D Gaussian filter
with 1 standard deviation. It is not recommended that smoothing be used on models with resolutions less than 1 degree, nor should smoothing be paired with
use_projection. The smoothed SLPs are only used when they come from gridIDs defined by smask during mcms_setup.py (generally high latitudes and troubled
centers, a figure of this smask is created by mcms_setup.py when save_plotis enabled). As a result no smoothing is applied over the mid-latitude oceans. Also, note
that the smoothed SLPs are only referred to for the initial center finding operations, after that the centers are filtered using the original SLPs.

use_projection: Setting this to non-zero tells MCMS to do the initial center finding in projected space (polar conformal) rather than the regular lon-lat grid space of the
SLP data. The projected option is newer and less tested. It is also slower, but likely to give better results at high latitude. The defaultis to interplote the SLP data onto a
180x180 equal area grid (~86 km) see nxx and nyy in mcms_center_finder.py to alter this.

Installing MCMS - 36

Note that you can keep different resource files for the same model each with special settings by giving them unique names (e.g., rf_nra2_cf projected.py,
rf_nra2_cf_smoothed.py...).

Installing MCMS - 37

Do Center Finding

Created: October 23,2012
Updated: October 23,2012

Centers Passed (MERRA Course Grid, Projected, HotSpots Removed)
1990-2011 (6 hourly, 0, 6, 12, 18 UTC)

X i,] -
B = i i - s = by .'.
G e -
P 7 - # 3 . i
Sl : ,ys:J g [T_. . e & " i
--T - 3l

o
B

Centers (Counts)

Q[TS . >

1 10 100 1000
Data Min = 1, Max = 12172

Center finding can take a while depending on the resolution of the data, the length of the record and the speed of your computer. MCMS will automatically use parallel
processing if it can; MCMS simply breaks the data into n-processor chunks and spawns a separate python process for each chunk and putting things back together again
when all the chucks are evaluated. If for some reason you want to limit the number of processors MCMS uses, simply set a non-zero processor_cnt in the relevant MCMS
resource files. Debugging parallel code can be difficult, which is why we provide the "single_processor" option in all relevant MCMS resource files.

Example (Note the lack of the -c "create" option):
$ cd /MCMS_HOME
$ python mcms center finder.py rf files/rf nra2 cf.py

Installing MCMS - 38

If the progress option was used in your resource file then /MCMS_HOME/util/done.py can be used to get a detailed report of what is happening.
$ python done.py OUTPUT_HOME 1
Progress Report

Year1979 [r--—mm- 21%] 614/2919
Year 1980 [21%] 614/2927
Year 1981 [22%] 638/2919
Year 1982 [22%] 630/2919
Year 1983 [22%] 646/2919
Year1984 [22%] 640/2927
Year1985 [r--—mm- 21%] 624/2919
Year 1986 [22%] 638/2919
Year1987 [21%] 626/2919
Year1988 [---—mm- 22%] 636/2927
Year 1989 [---—-mm- 23%] 658/2919

Installing MCMS - 39

Detecting and Dealing with Hotspots

Created: October 23,2012
Updated: October 23,2012

hotspots
BT By e
Comr o e Tl e e B g
B g L 4
T %ﬂ = | %Vj f';fn@;; o & jﬁ i
g ¥ —7 g e 1 o 2
Lol o
TYTS — REE 9z
2 ’ R I
a \|_g g (B
d SR
¢ «ﬁ”
£
BESES T "*““’“'ET
I N e N

hotspots (Counts)

aEE— I] g

1 2 3 4

An inescapable limitation of using SLP for cyclone finding is that SLP is a derived quantity away from sea level. This leads to the common worry that SLP values are
unreliable for some meteorological conditions and especially over the high or steep terrain (Benjamin and Miller 1990; Pauley 1998). The main concern here is that
erroneous SLPs will mask or mimic cyclones and therefore skew our analysis. Indeed, reanalysis based cyclone climatologies tend to differ most near high orography
(Hodges et al. 2003, Raible et al. 2008).

The filters used by MCMS during center finding and tracking largely mitigate the impact of sporadic SLP inaccuracies. Persistent SLP inaccuracies (biases) are of more
problematic. Attheir worst, we find that these errors create hotspots of center finding activity that can contain more than 10% of all the found centers but represent only 1%
of all center containing grids. Prominent hotspots occur over and around the Tibetan Plateau, Greenland and Antarctica. Because these hotspots are persistent they can
strongly influence cyclone finding and tracking in their vicinity. Moreover, in many cases these hotspots seem to be a reaction to the nearby passage of a legitimate cyclone;

Installing MCMS - 40

that is the hotspot aliases the true cyclone due to some interaction with the surface topography. Because MCMS limits how closely packed centers can be the danger is that

MCMS will choose the wrong center and if this happens a lot then a hotspot will appear in your results. Cyclone tracking can also be affected by these spurious centers as
they tend to distort or disrupt the tracks of passing cyclones.

The troubled/problematic center filter was created to deal with these hotspots and for the most part it does so successfully. In practice however, you may find some hotspots
in your center finding results. MCMS as a utility program that can identify these hotspots in your data and create a new filter to deal with them when you reanalyze your data.
To do this firstrun MCMS on at least 5 years of data. Then feed the results of this into MCMS_HOME/util/hotspots.py. This will create a number of plots (such as the one
above) that identifies grids that contain an inordinate fraction of the total center count. Within the center finding resource file you will see a use_hotspot and use_halo option
and a description of how to use these to subject these found hotspots to extra scrutiny by either appending them to the existing troubled filter or having MCMS simply ignore
the centers itfinds in these places. Note the halo in the case refers to the 8 grids surrounding each hotspot.

Caption: Hotspots identified by MCMS_HOME/util/hotspots.py. Here several types of hotspots are identified. The white-in-blue grids represent hotspots that occur in places
not already covered by the troubled filter (the blue ring represents the 8 surrounding grids). The yellow-in-red grids represent hotspots that despite being treated by the
troubled filter remain locations of excessive center identification (the red ring represents the 8 surrounding grids).

Installing MCMS - 41

Configure Tracking

Created: October 23,2012
Updated: October 23,2012

After center finding, MCMS will try to organize these centers into time sequences. Thatis, cyclone tracks. This is done by running mcms_track finder.py, which as before
requires its own resource file.

Example (Note the -c "create" option and the _tf ending):

$ cd /MCMS_HOME
$ python mcms track finder.py -c rf files/rf nra2 tf.py

As before we need to modify this file see also MCMS_HOME/doc/mcms_tracking _notes.txt.

There are a few options of note in this resource file:

defs_set: Alter the tracking default tracking options setin /MCMS_HOME/util/defs.py including thresholds such as minimum track length (time) or track travel (space).
save_stats: Setting this to non-zero tells MCMS to create some track finding statistics. A value of 1 returns the tracks and statistics (plus plots if requested) , while a
value of 2 returns just the statistics (plus plots if requested) without saving the tracks to file. For example, see.

save_plots: Setting this to non-zero tells MCMS to create plots. A value of 1 returns plots and their netCDF files, while a value of 2 returns just netCDF files. For
example, see.

pick_season: The determines the seasonal breakdown used for save_stats and save_plots. See cfg/mcms_season_base_defs.py of the available options or to add
new ones.

pick_m2s: Defines how months are mapped to the seasons requested by pick_season. Just use the same value as with pick_season. See
cfg/mcms_m2s_base defs.py to add new definitions.

use_hotspot and use_halo: As with center finding these can be used to extend the troubled center filter.

Installing MCMS - 42

Do Tracking

Created: October 23,2012
Updated: October 23,2012

passed tracking NRA2 1979-2011

passed (Counts)

1 10 100 1000

Track finding can take a while depending on the resolution of the model, the length of the record and the speed of your computer. Do to the time dependency of the tracking
problem MCMS does not use parallel processing during this process.

Example (Note the lack of the -c "create" option):
$ cd /MCMS HOME
$ python mcms trackl finder.py rf files/rf nra2 tf.py

While there is no progress option for tracking, MCMS provides progress bars and other feedback to tell you how things are progressing.
$ python mcms track finder.py rf files/rf merrac tf.py

Installing MCMS - 43

Reading Centers....
Centers Read (4865581):

1979
1985
1991
1997
2003
2009

(149579)
(149025)
(147609)
(144945)
(145365)
(149424)

1980
1986
1992
1998
2004
2010

(150770)
(149630)
(147988)
(145415)
(147176)
(145964)

Number of unique dates/times:

Finding Dissimilarity Scores....

Refactoring Tracks....

Resorting Tracks...
Making Final Report...

Saving more Stats and more Plots. .. [##HHHHAHHHHATHHHATHHHATHHATHHHATHHHATHHATHHATHHAHHHH |

Re-writing yearly files...

1981
1987
1993
1999
2005
2011
48212

(146711)
(149722)
(145240)
(146342)
(146928)
(146355)

1982
1988
1994
2000
2006

(148341)
(147772)
(147058)
(148072)
(149463)

1983
1989
1995
2001
2007

(147186)
(146465)
(145071)
(147215)
(149274)

1984
1990
1996
2002
2008

[HHHAAAATHH AT HH A AT AHHAAA AT RAAATAARAAAAAAHAAH |
Saving Stats and Making Plots. .. [##H#H#HHHHHHHHAHHHHHHAHHHHHHHHHHHHHHHHHHHHAHHHHHHAAA |
[FHHHAATT AT AT AT AT HH AT |

[#HHHHHHHHHHHA AT AAA#] 33/33

(149037)
(146031)
(144555)
(147980)
(147873)

48212/48212
8/8
922756/922756

6/6

Installing MCMS - 44

Configure Attribution

Created: October 23,2012
Updated: October 23,2012

In this step MCMS defines the size/area occupied by each cyclone by determining the largest set of close SLP contours around each center. This is called attribution.

This is done by running mcms_attribution_finder.py, which as before requires its own resource file.

Example (Note the -c "create" option and the _af ending):

$ cd /MCMS HOME
$ python mcms attribution finder.py -c rf files/rf nra2 af.py

As before we need to modify this file.

There are a few options of note in this resource file:

save_hi_res: Setting this to non-zero tells MCMS to save the attribution data using the gridIDs of the projected data rather than the regular lon-lat grid space of the SLP
data.

save_source_res: Setting this to non-zero tells MCMS to save the attribution data using the regular lon-lat grid space of the SLP data.

clevs: Sets the contour levels and interval used to find the closed contours. The defaultis 940 hPa to 1040 hPa with a 2 hPa interval.

linear_intervals: Setting this to non-zero tells MCMS to alter the contour interval such that for SLP values above 980 hPa the interval is half that listed in clevs. This
enhances the create of close contours around shallow/weak centers, which tend to have relatively high central SLPs.

pmap: Sets the map projection to apply to the SLP data. The defaultis Lambert Conformal.

nxx and nyy: Sets the grid density of the map projection (by hemisphere). In general nxx and nyy should be the same.

gxx and gyy: Sets the grid density used to fill the closed contours when determining the attribution gridIDs. This is usually higher than nxx/nyy and gxx is usually the
same as gyy.

contour_limit: Limit closed contours to those whose circumference is less than this value (km). Here we use the circumference of a small circle on a sphere with the
diameter equal to a zonal wave number 6 centered on a latitude of 45 degrees. The prevents MCMS using closed contours that span far to much area to be associated
with cyclone activity.

skip_hours: Setting this to a non-empty array tells MCMS to skip some hours while running. For example, skip_hours =["03","09","15","21"] tells MCMS to ignore 3,9,15
and 21 UTC while running. This is useful when your SLP data have very high time sampling or when you'd like to speed up a climatology to see the results. In this latter
case you can rerun mcms_attribution_finder.py with the inverse skip_hours (saving off all "centers.ixt" and diagnostics files to a separate locations first) and then use

Installing MCMS - 45

IMCMS_HOME/util/mecms_fix_fast.py to concatenate them into a whole record.

fast_run: Setting this to non-zero tells MCMS to execute a single year (fast_year) of data as quickly as possible. To do this fast_run breaks up the year into as many
pieces as processors it has available and merges the data when done. This is usually done to test or debug.

progress: Setting this to a non-empty array tells MCMS to save special progress files to /OUTPUT_HOME. These can be read by the program
/MCMS_HOME/util/done.py to get a progress report on mcms_attribution_finder.py as with works.

Installing MCMS - 46

Do Attribution

Created: October 23,2012
Updated: October 23,2012

Running the mcms_attribution_finder.py can take a long while depending on the resolution of the model, the length of the record and the speed of your computer. This is the
most time consuming aspect of MCMS.

Example (Note the lack of the -c "create" option):
$ cd /MCMS_HOME
$ python mcms_attribution_finder.py rf_files/rf_nra2_af.py

If the progress option was used you can get a detailed report of what is happening with MCMS_HOME/util/done.py.
$ python done.py OUTPUT_HOME 1
Progress Report

Year 1979 [21%] 614/2919
Year 1980 [21%] 614/2927
Year 1981 [22%] 638/2919
Year 1982 [22%] 630/2919
Year 1983 [22%] 646/2919
Year 1984 [22%] 640/2927
Year 1985 [21%] 624/2919
Year 1986 [22%] 638/2919
Year 1987 [21%] 626/2919
Year 1988 [22%] 636/2927
Year 1989 [---m--mm- 23%] 658/2919

Installing MCMS - 47

Determine Intensity

Installing MCMS - 48

Reformat Output

Installing MCMS - 49

Supplemental

Installing MCMS - 50

Appendix: rf_nra2_setup.py

Example resource file for mcms_setup.py

Created: October 23, 2012
Updated: October 23, 2012

rf_nra2_setup.py

#!/usr/bin/env python -tt

Create from a template via:
python mcms setup.py -c rf files/rf model setup.py
Input:
None
Output:

Various python data structures.

Examples:

AAAAAAANAN

Notes/Warnings:

AAAAAAAAAANAAANAANAN

Author: Mike Bauer <mbauer@giss.nasa.gov>

Log:

Installing MCMS - 51

2011/01 MB - File created
2012/10 MB - Updated

Standard library imports
import sys
import os

MCMS module imports: Need to have mcms in your PYTHONPATH environment variable!
from cfg import define source

from cfg import define figure

from cfg import define dirs

from cfg import define defs

from cfg import define vars

from cfg import ensure path

Modify these to set the paths for the data and MCMS output
import output root
import data root

verbose = 0

dotline = "$s" % ("-"*40)

msg = '\n%s\n%40s\n%s\n' % (dotline,"Main Settings Set",dotline)
if verbose: print msg

Pick data source see files in /cfg
See cfg/mcms source base defs.py

Installing MCMS - 52

pick source = define source()

msg = pick source.make pick("nra2")

if verbose: print msg

model = pick source.selection

model def = pick source.selections[model][0]

Import the base directories for the data and MCMS output
See rf files/output root.py
rf files/data_root.py

if hasattr(output root, '$s_root'
oroot = getattr(output root,
else:

% model):

'%s_root' % model)
oroot = output root.root

if hasattr(data _root,'%s root' % model):

droot = getattr(data_ root,
else:

%s_root' % model)

droot = data root.root
Can manually override these here

#oroot =
#droot = ""

Full path to the root directory where pick specific output will be stored.

If multiple data sets under same model (say GCM runs) add a subdirectory

to the model root. Can be worked with ensembles and experiments withint the
same model.

Example:
ensembles = {"control run" : [""],

Installing MCMS - 53

"Scenario AlB run" : ["E3abaoM20","E3abboM20","E3abcoM20", "E3abdoM20"],
"Scenario AlB iceMelt run" : ["E3FIBaoM20","E3FIBboM20"]}
blobs = {"control run" : "gissm 20",
"Scenario AlB run" : "gissm 20",
"Scenario AlB iceMelt run" : "gissm 20"}
experiment = "Scenario AlB iceMelt run"
ensemble = ensembles[experiment][0]
blob = blobs[experiment]

Blob represents the sometimes long descriptive name some GCMs add to their
output files (e.g., for the file naming pattern
cam b30.14 37kaDVT T85.cam2.hl1.0531-01-01-PSL.nc
the blob would be
cam b30.14 37kaDVT T85.cam2.hl
which tells mcms that the changeable part of the file name pattern is
.0531-01-01-PSL.nc

FHFoH O H H W HH HHHHHHH KK

ensemble =
experiment = ""
blob = ""
if ensemble:
subdir = "%s/%s/" % (experiment,ensemble)
else:
if experiment:
subdir = "%s/" % (experiment)
else:
subdir = ""
out path = "%s%s%s/" % (oroot,model,subdir)

out path = ensure path(subdir,out path,check exists=0)

Create needed directories if they don't exist.
See cfg/mcms directories base defs.py

Installing MCMS - 54

pick dirs = define dirs()
msg = pick dirs.make pick("standard")
dirs set = pick dirs.selection
need dirs = ["%$s%s" % (out path,x) for x in dirs_set]
if subdir:
op = out path.replace("/%$s" % subdir,"")
need dirs.insert(0,op)
for ndir in need dirs:
while ndir.find("//") != -1:
ndir = ndir.replace("//","/")
if not os.path.exists(ndir):
try:
os.mkdir(ndir)
if verbose:
print "\tMade: %s" % ndir
except:
sys.exit ("ERROR: creating %s" % ndir)
if verbose: print "OUT PATH: %s" % out path

"%s%s/%s" % (droot,model, subdir)
= ensure_path(subdir,slp path)
if verbose: print "SLP_PATH: %s" % slp path

n un
[
‘o 'O
o g
o 9
ct o
[ope
o

if subdir:
shared path = "%s%s_files/" % (oroot,model)

\

else:

Installing MCMS - 55

shared path = "%s files/" % (out path.replace("%$s/" % model,model))

shared path = ensure path(subdir,shared path)
if verbose: print "SHARED PATH: %s" % shared path

HoFH WK H H K H

H H WK H

Define the definitions to be read in.

Hows how to alter a parameter in defs w/out having to alter the file
itself. Here I use setup all as a flag to alter the defs so that all data
that can be pre-calculated and saved are, rather than the default which is
to read those data from file.

If set to 1, then topography information will not be used to determine
potentially troublesome locations for SLP dependent analysis. For
example, regions of very high or steep topography can result in erroneous
SLP values that either mimic or obscure cyclones. Generally, the
results are better with no topo set to 0.

no_topo = 0

#
#
#
#

If set to 1, then the land sea mask is not used to separate results
that occur over land or ocean grids. This info is not required for
full analysis. Note: the topography field can be used for this in
a pinch.

no mask = 0

#

Select wavenumber for regional screens.

wavenumbers = [4.0,8.0,13.0,18.0,26.0,52.0]

#
#
#

This value is used by center finder vX.py to screen for regional minima
status. Generally, using too low wavenumbers means overly screening
centers and too large values have little effect other than to

Installing MCMS - 56

make the analysis run longer. Good rule of thumb is 8-26.
wavenumber = wavenumbers[4]

Set the latitude equivalent *radius* in degrees for center/track density
calculations.
c size =5

Prevent centers from being found in at the pole (reduces a lot of problems).
The default is to screen centers poleward of -86 and 89. Change this

below if wanted (use degrees). Setting to -90,90 disables the screen.

This can be disabled when center finder etc. is run.

#polar exclusion = [-89.0,89.0]

polar exclusion = [-90.0,90.0]

Alter default behavior found in util/defs.py
See cfg/mcms defs base defs.py

pick defs = define defs()

msg = pick defs.make pick(model)

if verbose: print msg

defs set = pick defs.selection

defs set.update({'tropical boundary':15, "tropical boundary alt":30,
"critical radius":0.0,"wavenumber":wavenumber, "use gcd":True})

Names associated with the netcdf files for the source
See cfg/mcms_ncvars_ base defs.py

source vars = define vars()
msg = source_vars.make pick(model)
if verbose: print msg

Installing MCMS - 57

nc_vars = source_vars.selection

B e e e
Extra Settings Set

o
msg = '\n%s\n%40s\n%s\n' % (dotline,"Extra Settings Set",dotline)

if verbose: print msg

Save center finding plots (requires matplotlib, 2x memory footprint)
save plot =1

msg = 'save plot = %d' % save plot

if verbose: print msg

What sort of figures (png faster, eps/pdf better quality)
See cfg/mcms_ figure base defs.py
'pdf' and 'eps' much slower than 'png', but higher quality

pick figure = define figure()
msg = pick figure.make pick("png")
if verbose: print msg

fig format = pick figure.selection

Halt program on error or just warn?
exit on error =1

msg = 'exit on error = %d' % exit on error
if verbose: print msg

print

Installing MCMS - 58

Appendix: setup_logfile.txt

Example setup_lodfile.txt file

Created: October 23, 2012
Updated: October 23, 2012

setup_logfile.txt

khkkkhhhhkhhhkhhhhhhhhhhkhhhhkhhdhkhhhhkhhhkhhdhkhhhhkhhdhkhhhhkhhdhkhhhkhhhkhkhhdhkhkhkhkhhdhkhkkhkhkhkk,kkkk*x
*********************************Running Setup**********************************

khkkkhkkkkhkhkkkhkhkhkhkhkhkkhkhhkhkhkkhkhkhhkhkhhkhkhkhhkhkhhkhkhkkkhkhhkhkhkkhkhkhhkhkhkkhkhkkkhkhkhkhkkkhkhkkhkhkkkhkkkkkkk*x

Using:

Model: NCEP-DOE Reanalysis 2 (a.k.a. nra2)

Out_Path: /Users/mbauer/Scratchf/output/nra2/

Shared Dir: /Users/mbauer/Scratchf/output/nra2 files/
SLP Path: /Users/mbauer/Scratchf/data/nra2/

no_topo: False

no _mask: False

Setup Data Organization and Time References...
Reading Data Folder: /Users/mbauer/Scratchf/data/nra2/
Found Files:

mslp.
mslp.
mslp.
mslp.
mslp.
mslp.
mslp.

1979
1983
1987
1991
1995
1999
2003

mslp.1980
mslp.1984
mslp.1988
mslp.1992
mslp.1996
mslp.2000
mslp.2004

mslp.1981
mslp.1985
mslp.1989
mslp.1993
mslp.1997
mslp.2001
mslp.2005

mslp.
mslp.
mslp.
mslp.
mslp.
mslp.
mslp.

1982
1986
1990
1994
1998
2002
2006

Installing MCMS - 59

mslp.2007 mslp.2008 mslp.2009 mslp.2010
mslp.2011 mslp.2012
Found Years:
1979 1980 1981 1982
1983 1984 1985 1986
1987 1988 1989 1990
1991 1992 1993 1994
1995 1996 1997 1998
1999 2000 2001 2002
2003 2004 2005 2006
2007 2008 2009 2010
2011 2012
Found Months:
None
Found Days:
None
Time Information:
Calendar: standard
Year Bounds: [1979,2012]
Time steps: 48940
Time step: 6
Made: /Users/mbauer/Scratchf/output/nra2_ files/time_dat.pz

Latitude Information:
Point Registered: True
Faux Grids: 2
Gaussian Grid: False
Latitude Flipped: True
Latitude Spacing: 2.5
Latitudes (jm = 73):
-89.370 -87.500 -85.000 -82.500 -80.000 -77.500

Installing MCMS - 60

-75.000
-60.000
-45.000
-30.000
-15.000
0.000
15.000
30.000
45.000
60.000
75.000
89.370

-72.500
-57.500
-42.500
-27.500
-12.500
2.500
17.500
32.500
47.500
62.500
77.500

-70.
-55.
-40.
-25.
-10.
5.
20.
35.
50.
65.
80.

Latitudes Edges (74):

-90.000
-76.250
-61.250
-46.250
-31.250
-16.250
-1.250
13.750
28.750
43.750
58.750
73.750
88.750

-88.750
-73.750
-58.750
-43.750
-28.750
-13.750
1.250
16.250
31.250
46.250
61.250
76.250
90.000

-86
-71
-56
-41
-26
-11

3.
18.
33.
48.
63.
78.

Longitude Information:
Longitude Rotated: False (0)
Longitude Spacing: 2.5 degrees

(im = 144):

Longitudes
0.000

2.500

5.

000 -67.500
000 -52.500
000 -37.500
000 -22.500
000 -7.500
000 7.500
000 22.500
000 37.500
000 52.500
000 67.500
000 82.500

.250 -83.750
.250 -68.750
.250 -53.750
.250 -38.750
.250 -23.750
.250 -8.750
750 6.250
750 21.250
750 36.250
750 51.250
750 66.250
750 81.250

000 7.500

-65
=50
-35
-20

10
25
40
55
70
85

-81
-66
=51
-36
=21

10

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

.250
.250
.250
.250
.250
.250
.750
23.
38.
53.
68.
83.

750
750
750
750
750

.000

-62
-47
-32
-17

12
27
42
57
72
87

-78.
-63.
-48.
-33.
-18.
.750
.250
.250
.250
.250
.250
.250

11
26
41
56
71
86

12

.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500

750
750
750
750
750

.500

Installing MCMS - 61

15.000

30.000

45.000

60.000

75.000

90.000
105.000
120.000
135.000
150.000
165.000
180.000
195.000
210.000
225.000
240.000
255.000
270.000
285.000
300.000
315.000
330.000
345.000

17.500

32.500

47.500

62.500

77.500

92.500
107.500
122.500
137.500
152.500
167.500
182.500
197.500
212.500
227.500
242.500
257.500
272.500
287.500
302.500
317.500
332.500
347.500

20.

35.

50.

65.

80.

95.
110.
125.
140.
155.
170.
185.
200.
215.
230.
245.
260.
275.
290.
305.
320.
335.
350.

Longitude Edges (145):

-1.250
13.750
28.750
43.750
58.750
73.750
88.750
103.750

1.250
16.250
31.250
46.250
61.250
76.250
91.250

106.250

3.
18.
33.
48.
63.
78.
93.

108.

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

750
750
750
750
750
750
750
750

22.500

37.500

52.500

67.500

82.500

97.500
112.500
127.500
142.500
157.500
172.500
187.500
202.500
217.500
232.500
247.500
262.500
277.500
292.500
307.500
322.500
337.500
352.500

6.250
21.250
36.250
51.250
66.250
81.250
96.250

111.250

25

40

55

70

85
100
115
130
145
160
175
190
205
220
235
250
265
280
295
310
325
340
355

8.
23.
38.
53.
68.
83.
98.

113

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

750
750
750
750
750
750
750
.750

27

42

57

72

87
102
117
132
147
162
177
192
207
222
237
252
267
282
297
312
327
342
357

11
26
41
56
71
86
101
116

.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500
.500

.250
.250
.250
.250
.250
.250
.250
.250

Installing MCMS - 62

118.750 121.250 123.750 126.250 128.750 131
133.750 136.250 138.750 141.250 143.750 146
148.750 151.250 153.750 156.250 158.750 161
163.750 166.250 168.750 171.250 173.750 176
178.750 181.250 183.750 186.250 188.750 191
193.750 196.250 198.750 201.250 203.750 206
208.750 211.250 213.750 216.250 218.750 221
223.750 226.250 228.750 231.250 233.750 236
238.750 241.250 243.750 246.250 248.750 251
253.750 256.250 258.750 261.250 263.750 266
268.750 271.250 273.750 276.250 278.750 281
283.750 286.250 288.750 291.250 293.750 296
298.750 301.250 303.750 306.250 308.750 311
313.750 316.250 318.750 321.250 323.750 326
328.750 331.250 333.750 336.250 338.750 341
343.750 346.250 348.750 351.250 353.750 356
358.750

Tropical boundary: 15 degrees
Tropical n: 42 6191 (row,gridid)

EQ grid:

36 (on_edge False) 5184 (row,gridid)

Tropical s: 30 4320 (row,gridid)

Tropical boundary Alt: 30 degrees
Tropical n alt: 48 7055 (row,gridid)

EQ grid:

36 5184 (row,gridid)

Tropical s alt: 24 3456 (row,gridid)

Polar boundary: 70 degrees

Polar n:
Polar_s:

64 9359 (row,gridid)
8 1152 (row,gridid)

High Resolution: False

.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250
.250

Installing MCMS - 63

Row_start:

0 144 288 432 576 720 864 1008 1152 1296 1440 1584
1728 1872 2016 2160 2304 2448 2592 2736 2880 3024 3168 3312
3456 3600 3744 3888 4032 4176 4320 4464 4608 4752 4896 5040
5184 5328 5472 5616 5760 5904 6048 6192 6336 6480 6624 6768
6912 7056 7200 7344 7488 7632 7776 7920 8064 8208 8352 8496
8640 8784 8928 9072 9216 9360 9504 9648 9792 9936 10080 10224

10368

Row_end:
143 287 431 575 719 863 1007 1151 1295 1439 1583 1727
1871 2015 2159 2303 2447 2591 2735 2879 3023 3167 3311 3455
3599 3743 3887 4031 4175 4319 4463 4607 4751 4895 5039 5183
5327 5471 5615 5759 5903 6047 6191 6335 6479 6623 6767 6911
7055 7199 7343 7487 7631 7775 7919 8063 8207 8351 8495 8639
8783 8927 9071 9215 9359 9503 9647 9791 9935 10079 10223 10367

10511

Setup Center Finder...
Made: /Users/mbauer/Scratchf/output/nra2 files/cf dat.pz

Made figure /Users/mbauer/Scratchf/output/nra2_ files/nra2_regional_radius_one longitude_all latitudes.png

Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 regional radius one longitude all latitudes cuml.png
Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 regional radius one longitude all latitudes cuml nh.png
Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 regional radius_one_ longitude all latitudes cuml_ sh.png
Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 regional radius all longitudes one latitude.png

Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 regional radius example.png

Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 regional radius_all longitudes one_ latitude nh.png

Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 regional radius example nh.png

Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 regional radius all longitudes one latitude sh.png

Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 regional radius_ example sh.png

Installing MCMS - 64

Setup Track Finder...
Made: /Users/mbauer/Scratchf/output/nra2 files/tf dat.pz

Setup Density...
Made: /Users/mbauer/Scratchf/output/nra2 files/df dat.pz

Making Land Mask

Making Problematic Mask

Storing Setup Values...
Made: /Users/mbauer/Scratchf/output/nra2 files/s dat.pz

Made: /Users/mbauer/Scratchf/output/nra2 files/s datf.pz

Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 smask.png
Made figure /Users/mbauer/Scratchf/output/nra2_ files/nra2_land mask.png
Made figure /Users/mbauer/Scratchf/output/nra2 files/nra2 troubled grids.png

Testing Pull Data...
Made figure: /Users/mbauer/Scratchf/output/nra2 files/nra2 example slp 1979010100.png

khkkkhkkhkhkhkkhkhhhkhkhkhkhkhhhkhhhkhkhhkhkhhhkhkhhkhkhhkhkhkhhkhkhhkhkhkkhkhkhhkhkhhkhkhkhkhkhkhhkhkhkkhkhkhhkhkhkkkhkkkikkkk*x
*********************************Setup Complete*********************************

khkkkhkkkkhkhkkkhkhkkhkhkkhkhkhhkhkhkkhkhkhhkhkhkkhkhkhkkhkhhkhkhkkkhkhhkhkhkkhkhkhhkhkkkhkhkkkhkkkhkhkkkhkkkhkkkkhkkkkkk*,*x

Installing MCMS - 65

merrac_tropical_land_mask

Tropical Land Mask

Installing MCMS - 66

merrac_smask

Smooth Mask (Excluded)

Installing MCMS - 67

merrac_troubled_grids

Troubled Grids

Installing MCMS - 68

merrac_regional_radius_example_nh

Regional Search at 45.00°N

Installing MCMS - 69

Appendix: rf_nra2_cf.py

Example resource file for mcms_center_finder.py

Created: October 23, 2012
Updated: October 23, 2012

rf_nra2_cf.py

#!/usr/bin/env python -tt

Create from a template via:
python mcms center finder.py -c rf files/rf model cf.py
Input:
None
Output:

Various python data structures.

Examples:

AAAAAAANAN

Notes/Warnings:

AAAAAAAAAANAAANAANAN

Author: Mike Bauer <mbauer@giss.nasa.gov>

Log:

Installing MCMS - 70

2011/01 MB - File created
2012/10 MB - Updated

Standard library imports
import sys

import os

import fnmatch

MCMS module imports: Need to have mcms in your PYTHONPATH environment variable!
from cfg import define source
from cfg import define figure
from cfg import define dirs
from cfg import define defs
from cfg import define vars
from cfg import ensure path
from util import FileExists
from util import organize data
from util import query yes no
from util import InjestSetup

Modify these to set the paths for the data and MCMS output
import output root
import data root

verbose = 0

dotline = "%s" % ("-"*40)

msg = '\n%s\n%40s\n%s\n' % (dotline,"Main Settings Set",dotline)
if verbose: print msg

Main Settings

Installing MCMS - 71

Pick data source see files in /cfg
See cfg/mcms_source base defs.py

pick source = define source()

msg = pick source.make pick("nra2")

if verbose: print msg

model = pick source.selection

model def = pick source.selections[model][0]

Import the base directories for the data and MCMS output
See rf files/output_root.py
rf files/data root.py

if hasattr(output root, '$s_root'
oroot = getattr(output root,
else:

% model):

'%s_root' % model)
oroot = output root.root

if hasattr(data _root,'%s root' % model):

droot = getattr(data_ root,
else:

%s_root' % model)

droot = data_ root.root
Can manually override these here

#oroot =
#droot = ""

Full path to the root directory where pick specific output will be stored.

Installing MCMS - 72

If multiple data sets under same model (say GCM runs) add a subdirectory
to the model root. Can be worked with ensembles and experiments withint the
same model.

Example:
ensembles = {"control run" : [""],
"Scenario AlB run" : ["E3abaoM20","E3abboM20","E3abcoM20","E3abdoM20"],
"Scenario AlB iceMelt run" : ["E3FIBaoM20","E3FIBboM20"]}
blobs = {"control run" : "gissm 20",
"Scenario AlB run" : "gissm 20",
"Scenario AlB iceMelt run" : "gissm 20"}
experiment = "Scenario AlB iceMelt run"

ensemble = ensembles[experiment][0]
blob = blobs[experiment]

Blob represents the sometimes long descriptive name some GCMs add to their
output files (e.g., for the file naming pattern
cam b30.14 37kaDVT T85.cam2.hl1.0531-01-01-PSL.nc
the blob would be
cam b30.14 37kaDVT T85.cam2.hl
which tells mcms that the changeable part of the file name pattern is
.0531-01-01-PSL.nc

o W H H W HH W HHHHHHHHHHHHHH

ensemble =
experiment = ""
blob = ""
if ensemble:

subdir = "%s/%s/" % (experiment,ensemble)
else:

if experiment:

subdir = "%s/" % (experiment)
else:

Installing MCMS - 73

subdir =
out path = "%s%s%s/" % (oroot,model,subdir)
out path = ensure path(subdir,out path,check exists=0)

slp path = "%s%s/%s" % (droot,model,subdir)
slp path = ensure path(subdir,slp path)

if subdir:

shared path = "%s%s files/" % (oroot,model)
else:

shared path = "%s files/" % (out path.replace("%$s/" % model,model))
shared path = ensure path(subdir,shared path)

Names associated with the netcdf files for the source
See cfg/mcms_ncvars_ base defs.py

source vars = define vars()

msg = source vars.make pick(model)

if verbose: print msg

nc_vars = source _vars.selection

break fname = nc_vars['break fname']

month sort order = nc vars['month sort order']
the calendar = nc vars['calendar']

jd_fake = nc_vars['jd fake']

get time dat = "time dat"

Installing MCMS - 74

Accelerated climatology, but by disabling the standard diagnostics and
saving of discarded centers.

express = 0
if verbose and express: print "Express mode in use."

Fast way to do a single year ... by splitting the year into pieces &

work on each subset with a processor. This is generally for debugging
or testing something.

Example:

Il
=

fast run
fast year = 2000

fast run = 0

fast year = 0

if express and fast run:
print "\tCannot have an express and fast run at the same time"
return 1

if verbose and fast run: print "Fast run mode for %d" % fast year

Skip some some timesteps when reading the SLP data (convert a 3 hourly dataset
into a 6 hourly one). This is generally for debugging or testing something.

Example:

skip hours = ["03","09","15","21"]

Installing MCMS - 75

Over write the default of doing all years located by mcms setup.py
Example:
over write years = [2000,2010]

over write years = []
if fast run:
over write years = [fast year,fast year]

fnc_out,inputs = InjestSetup("%ss _datf.pz" % (shared path),0)
msg = "OUTPUT PATH (Default): %s"
if out path != fnc out[inputs.index("out path")]:
msg = "OUTPUT PATH (Modified): %s"
if verbose: print msg % out path
if verbose: print "SHARED PATH: %s" % shared path

pick dirs = define dirs()

msg = pick dirs.make pick("standard")

dirs_set = pick dirs.selection

need dirs = ["%$s%s" % (out _path,x) for x in dirs set]

need dirs.append("%s%s" % (out path,"figs/maps/global/"))

need dirs.append("%s%s" % (out path,"figs/maps/global/annual/"))
need dirs.append("%s%s" % (out path,"figs/pdfs/global/"))

Installing MCMS - 76

need dirs.append("%s%s" % (out path,"figs/pdfs/global/annual/"))
for ndir in need dirs:
if not os.path.exists(ndir):
try:
os.mkdir(ndir)
if verbose:
print "\tMade: %s" % ndir
except:
sys.exit ("ERROR: creating %s" % ndir)

B
Updates if needed

o
msg = "SLP PATH (Default): %s"

check time = 0

if slp path != fnc out[inputs.index("slp path")]:
msg = "SLP PATH (Modified): %s"
check time =1

if not os.path.exists(slp path):
sys.exit ("ERROR: slp path not found.")

if verbose: print msg % slp path

msg = "SOURCE YEARS (Modified): %s"

if not over write years:
over write years = fnc out[inputs.index("super years")]
over write years = [int(over write years[0]),int(over write years[1l])]
msg = "SOURCE YEARS (Default): %s"

super years = over write years

if verbose: print msg % repr(super years)
if fast run:

tail = " centers.txt"

just center table =1

detail tracks = ""

Installing MCMS - 77

include att = 0
include atts = 0

row_end = fnc out[inputs.index("row end")]

row_start = fnc out[inputs.index("row start")]
tropical n alt = fnc out[inputs.index("tropical n alt")]
tropical s alt

fnc_out[inputs.index("tropical s alt")]
tropical _end = row _end[tropical n_alt]
tropical start = row start[tropical s alt]
maxid = fnc_out[inputs.index("maxid")]
land gridids = [] #fnc_out[inputs.index("land gridids")]
flons = fnc out[inputs.index("lons")]
flats = fnc out[inputs.index("lats")]

del fnc out

If command line python mcms xxx.py rf file.py -s
suppress check time
for file in os.listdir('.'):
if fnmatch.fnmatch(file, 'skip*'):
check time = 0
os.remove(file)
if check time:
Evoke mcms organize data.py because the time dat.p file created by
mcms_setup.py may not correctly represent the data

If command line python mcms xxx.py rf file.py -n
suppress query yes no for time dat

no ask = 0

for file in os.listdir('.'):

Installing MCMS - 78

if fnmatch.fnmatch(file, 'no _ask*'):
no ask =1
os.remove(file)

Name for new time dat file
if ensemble:
get time dat = "time dat %s %s" % (experiment,ensemble)
else:
if experiment:
get time dat = "time dat %s" % (experiment)
else:
get time dat = "time dat"

Test to see if already get time dat defined
gf = shared path+get time dat+".pz"
over = 1
if FileExists(gf, name_ ,verbose=False) and not no_ask:
Warn about overwriting
msg = "\n\tWarning: Overwrite [%s]?"
print msg % gf
answer = query yes no("\t\tContinue?")
if not answer: over = 0
if over:
Run mcms_organize data... create time dat.p

Names associated with the netcdf files for the source
#source vars = define vars()

#msg = source_vars.make pick(model)

#nc_vars = source vars.selection

Assume that mcms_ncvars_base defs.py correctly defines
file seperater

Installing MCMS - 79

month sort order

break fname

calendar

jd_fake

If not put the new ones here and pass along

* H WK

#break fname = nc_vars|['break fname']

#month _sort order = nc_vars['month sort_order']

#the calendar = nc vars|['calendar']

#jd_fake = nc vars['jd fake']

msg = organize data(slp_ path,break fname,nc vars['var slp'],
month sort order,the calendar,nc vars['var time'],jd fake,
shared path,blob,base name=get time dat,verbose=0)

print msg

o
Define some files and important values
e
centers file = "centers.txt"

dumped centers file = "dumped centers.txt"

start year = int(super_years[0])
end year = int(super years[1l])
nyears = end year-start year+l
if verbose:
print "CENTERS FILE: %s" % centers file
print "DUMPED CENTERS FILE: %s" % dumped centers file

Pick data source see defs files in /cfg
pick defs = define defs()
msg = pick defs.make pick(model)

Installing MCMS - 80

if verbose: print msg
defs set = pick defs.selection

o
Extra Settings Set
e
msg = '\n%s\n%40s\n%s\n' % (dotline,"Extra Settings Set",dotline)

if verbose: print msg

What sort of figures (png faster, eps/pdf better quality)
pick figure = define figure()

msg = pick figure.make pick("png")

#msg = pick figure.make pick("pdf")

if verbose: print msg

fig format = pick figure.selection

Set for debugging as multiprocessing doesn't always report why a program hangs.
single processor = 0
if fast run:
single processor = 0
msg = "Warning Running Single Processor Mode!"
if verbose and single processor: print msg

Manually set the number of processors for multiprocessing.
processor_cnt = 0
if verbose and processors: print "Manual processor count: %d" % processor_cnt

Save debugging data for post analysis
save stats = 0
if express:
save_stats = 0
if fast run:

Installing MCMS - 81

save_stats = 0
msg = 'save stats = %d' % save_ stats
if verbose: print msg

Save center finding plots (requires matplotlib, also doubles or more memory footprint)
save plots = 0
if fast run:
save plots = 0
if express:
save_plots = 0
msg = 'save plots = %d' % save plots
if verbose: print msg

Halt program on error or just warn?
exit on error =1
o

msg = 'exit on error = %d' % exit on_error
if verbose: print msg

Plot map on error (requires matplotlib, also doubles or more memory footprint)
plot_on error = 0
if fast run:
plot_on error = 0
if express:
plot_on error = 0
msg = 'plot on error = %d' % plot on error
if verbose: print msg

Create progress files which can used by python util/done.py out path
to check the progress of a run if you cannot use the progress bar
(e.g., remote logging or background process).

progress = 0

if fast run:

Installing MCMS - 82

progress = 1
if progress:
file list = os.listdir(out path)
file list.sort()
pfiles = [x for x in file list if x.find("progress") != -1]
for p in pfiles:
os.remove (out_path+p)

Special Limit center finding by hemisphere (for speed)
limit nh 0

limit sh = 0

if limit nh or limit sh:

print "Warning Using Hemisphere Limit!"

Apply a weak 2D Gaussian filter to smooth the SLP field before center finding
smooth = 0

Screen tropical land grids in initial center finding.
screen tropical land =1

Special discard centers if in troubled rather than treat differently.
drop_troubled = 0

#
Override values from mcms_setup.py
#
#no poles = []
#high res 1
if fast run:
defs set["keep discards"] = 0

if express:
defs set["keep discards"] = 0

Installing MCMS - 83

use projection = 1
#projs = ['laea', 'stere','aeqd']
#pmap = projs[0]
#mproj sh = 'sp'+pmap
#mproj nh = 'np'+pmap
if use projection:
no poles = []

Pure candidates (dump the count of candidate centers found before filtering). For
debugging.
pure candidates = 0

Use hotspot file: After a mcms center finding is run it might be that some
locations exhibit unrealistically high center counts (hotspots). Once
identified the option exists to re-run center counting and either treating
these hotspots (and also 8 neighbors) to the extra checks for troubled centers
or simple discard them outright. The concern here is that if noise causes a
persistent error in the SLP field in a location that hotspot might mask out
all nearby legitimate cyclone centers via the regional minimum tests. Also
latter with tracking a hotspot can force passing tracks always vier over

this spot.

use hotspot =
ignore
add to troubled (screen)
outright discard
discard centers if in troubled hotspots, otherwise add
hot spots, (halo and troubled halo to troubled if use halo).
Include the 8 surrounding grids for each hotspot as insurance.

w NN P O

use halo =

FHoH W H H W H H W HH W HHHHH WK

0 ignore

Installing MCMS - 84

1 add to troubled
use hotspot = 0
use halo = 0
if use hotspot:
import cPickle
import gzip
hfile = "%s%s_hotspots.pz" % (shared path,model)
in_hot spots,in_halo,in_troubled hot spots,in troubled halo = cPickle.load(
gzip.open(hfile))
discard hot spots = []
screen_hot spots = []
if use hotspot ==
Everything added to screen
screen hot spots = in hot spots
screen_hot spots.extend(in_troubled hot spots)
if use halo:
screen hot spots.extend(in halo)
screen_hot spots.extend(in_ troubled halo)
elif use hotspot == 2:
Everything added to discard
discard hot spots = in_ hot spots
discard hot spots.extend(in_ troubled hot spots)
if use halo:
discard hot spots.extend(in_halo)
discard hot spots.extend(in_ troubled halo)
elif use hotspot == 3:
Troubled hot spot to discard, else to screen
screen_hot spots = in_hot spots
discard hot spots = in troubled hot spots
if use halo:
screen_hot spots.extend(in_ halo)
screen hot spots.extend(in troubled halo)

Installing MCMS - 85

Installing MCMS - 86

Appendix: Center Finding Diagnostics

Example diagnostic output from mcms_center_finder.py

Created: October 23, 2012
Updated: October 23, 2012

mcms_nra2_2000_cf base_report.txt

Run with projection =0

2000

Total Time Steps: 1464

Based Grid Count (im*jm): 10512

Total Possible Center CNT: 15389568

Centers dropped by preprocessing: 3160776 (20.54%) or 2159/step
Centers dropped by non-minima: 12003372 (78.00%) or 8199/step
Raw candidate centers: 225420 (1.46%) or 153/step

Kept candidate centers: 77223 (0.50%) or 52/step

Run with projection = 1

2000

Total Time Steps: 1464

Based Grid Count (im*jm): 10512

Total Possible Center CNT: 15389568

Centers dropped by preprocessing: 15126519 (98.29%) or 10332/step
Centers dropped by non-minima: 0 (0.00%) or 0/step

Raw candidate centers: 166100 (1.08%) or 113/step

Kept candidate centers: 63004 (0.41%) or 43/step

Installing MCMS - 87

mcms_nra2_2000_centers_report.txt

Run with projection =0

2000
Final Center CNT: 67317 (51.43%) from 130880 candidates where
67317 (51.43%) Passed all filters
35680 (27.26%) Failed concavity/Laplacian filter
25732 (19.66%) Failed regional minimum filter
2151 (1.64%) Failed troubled center filter

Run with projection = 1

2000
Final Center CNT: 63004 (37.93%) from 166100 candidates where
63004 (37.93%) Passed all filters
92601 (55.75%) Failed concavity/Laplacian filter
5357 (3.23%) Failed regional minimum filter
5138 (3.09%) Failed troubled center filter

mcms_nra2_center_final_report_1979-2012.txt

Run with projection =0

1979--2010

Final Center CNT: 2122891 (50.95%) from 4166585 candidates where
2122891 (50.95%) Failed all filters

1148282 (27.56%) Failed concavity/Laplacian filter

822970 (19.75%) Failed regional minimum filter

72442 (1.74%) Failed troubled center filter

Run with projection = 1 (Note this version included 2011 and part of 2012)

Installing MCMS - 88

1979--2012
Final Center CNT: 2068467 (37.50%) from 5515394 candidates where

2068467 (37.50%) Failed all filters

3094965 (56.12%) Failed concavity/Laplacian filter
174105 (3.16%) Failed regional minimum filter
177857 (3.22%) Failed troubled center filter

Center Finding Diagnostic netCDF files

Example diagnostic netCDF files created by mcms center finder.py when save_plots is used.

Files created for each year document the actions of the concavity/Laplacian filter, regional minimum filter, troubled center filter and the retained (passed) canidate centers.

/OUTPUT HOME/netcdfs/
nra2_ cf passed 2000.nc
nra2 cf lap 2000.nc

Installing MCMS - 89

nra2 cf reg 2000.nc
nra2 cf troub 2000.nc

Another set of files summerize the same information over the entire time record. In addition, a number of frequency, relative to the number of potential canidate centers prior
to the filters, files are created.
/OUTPUT HOME/netcdfs/
nra2 cf candidates 1979-2012.nc
nra2 cf passed 1979-2012.nc
nra2 cf freq passed 1979-2012.nc
nra2_cf lap 1979-2012.nc
nra2 cf freq lap 1979-2012.nc
nra2 cf reg 1979-2012.nc
nra2 cf freq reg 1979-2012.nc
nra2 cf troub 1979-2012.nc
nra2 cf freq troub 1979-2012.nc

The figure above is an exmaple of the short of information contained in these files.

Caption: The net effect of filtering during the center finding part of the analysis. Each panel is scaled to show the percentage of all centers initially identified as potential
cyclones by the SLP minima/maxima screen that are excluded by each filter (net result over the entire analysis period). Shown from left to right, top to bottom are the
following: a) The net effect of all filters, b) The impact of excluding problematic grids with high pressure or large horizontal variations in SLP. c) The impact of excluding grids
with low laplacian (or concavity) in the local SLP field. d) The impact of reducing center counts to a single member on a regional scale.

Installing MCMS - 90

Appendix: rf_nra2_tf.py

Example resource file for mcms_track finder.py

Created: October 23, 2012
Updated: October 23, 2012

rf_nra2_tf.py

#!/usr/bin/env python -tt

Default run file template for mcms_track finder
Create from a template via:
python mcms track finder.py -c rf files/rf model tf.py
Input:
None
Output:

Various python data structures.

Examples:

AAAAAAAA

Notes/Warnings:

AAAAAAAAAAAAAA

Author: Mike Bauer <mbauer@giss.nasa.gov>

Installing MCMS - 91

Log:
2011/01 MB - File created
2012/10 MB - Updated

Standard library imports
import sys

import os

import fnmatch

MCMS module imports: Need to have mcms in your PYTHONPATH environment variable!
from cfg import define source
from cfg import define figure
from cfg import define dirs

from cfg import define defs

from cfg import define vars

from cfg import ensure path

from cfg import define season
from cfg import define m2s

from util import FileExists

from util import organize data
from util import query yes no
from util import InjestSetup
from util import Is_ It Available

Modify these to set the paths for the data and MCMS output
import output root
import data root

Quit on error else just send message to logfile?
def do this(do msg,do msg2,do date stamp):

Installing MCMS - 92

print "\n\n"

print do msg

print do msg2

print "\t\tDate Stamp:"+do date stamp
print

verbose = 0

dotline = "$s" % ("-"%40)

msg = '\n%s\n%40s\n%s\n' % (dotline,"Main Settings Set",dotline)
if verbose: print msg

verbose = 0

dotline = "$s" % ("-"+%40)
msg = '\n%s\n%40s\n%s\n' % (dotline,"Main Settings Set",dotline)
if verbose: print msg

Pick data source see files in /cfg
See cfg/mcms_source base defs.py

pick source = define source()

msg = pick source.make pick("nra2")

if verbose: print msg

model = pick source.selection

model def = pick source.selections[model][0]

Import the base directories for the data and MCMS output

Installing MCMS - 93

See rf files/output root.py
rf files/data_root.py

if hasattr(output root, '$s_root'
oroot = getattr(output root,
else:

% model):

'%s_root' % model)
oroot = output root.root

if hasattr(data root,'%s root' % model):

droot = getattr(data_ root,
else:

%s_root' % model)

droot = data root.root
Can manually override these here

#oroot =
#droot = ""

Full path to the root directory where pick specific output will be stored.

ensemble = ensembles[experiment][0]
blob = blobs[experiment]

If multiple data sets under same model (say GCM runs) add a subdirectory
to the model root. Can be worked with ensembles and experiments within the
same model.

#

Example:

ensembles = {"control run" : [""],

"Scenario AlB run" : ["E3abaoM20","E3abboM20", "E3abcoM20","E3abdoM20"],
"Scenario AlB iceMelt run" : ["E3FIBaoM20","E3FIBboM20"]}

Dblobs = {"control run" : "gissm 20",

"Scenario AlB run" : "gissm 20",

"Scenario AlB iceMelt run" : "gissm 20"}

experiment = "Scenario AlB iceMelt run"

#

#

#

Installing MCMS - 94

Blob represents the sometimes long descriptive name some GCMs add to their
output files (e.g., for the file naming pattern

cam b30.14 37kaDVT T85.cam2.h1.0531-01-01-PSL.nc

the blob would be

cam b30.14 37kaDVT T85.cam2.hl

which tells mcms that the changeable part of the file name pattern is

.0531-01-01-PSL.nc

ensemble =
experiment = ""
blob = ""
if ensemble:
subdir = "%s/%s/" % (experiment,ensemble)
else:
if experiment:
subdir = "%s/" % (experiment)
else:
subdir = ""
out path = "%s%s%s/" % (oroot,model,subdir)

out path = ensure path(subdir,out path,check exists=0)

slp path = "%s%s/%s" % (droot,model,subdir)
slp path = ensure path(subdir,slp path)

if subdir:

O

shared path = "%s%s files/" % (oroot,model)

Installing MCMS - 95

else:
shared path = "%s files/" % (out path.replace("%$s/" % model,model))
shared path = ensure path(subdir,shared path)

B
Define seasons used to collect tracking statistics

See cfg/mcms_season base defs.py and cfg/mcms m2s base defs.py

Example:

msg = pick season.make pick("3mo") for ["annual","djf","mam","jja","son"]
Note: use the same option for pick season and pick m2s

B

pick season = define season()

msg = pick season.make pick("3mo")
if verbose: print msg

seasons = pick season.selection

pick m2s = define m2s()

msg = pick m2s.make pick("3mo")
if verbose: print msg

m2s = pick m2s.selection

Over write the default of doing all years located by mcms setup.py
Example:
over write years = [2000,2010]

Names associated with the netcdf files for the source
See cfg/mcms_ncvars_base defs.py

Installing MCMS - 96

source_vars = define vars()

msg = source_ vars.make pick(model)

if verbose: print msg

nc_vars = source_vars.selection

break fname = nc_vars|['break fname']

month sort order = nc_vars['month sort order']
the calendar = nc_vars|['calendar']

jd_fake = nc _vars['jd fake']

get time dat = "time dat"

fnc out,inputs = InjestSetup("%ss datf.pz" % (shared path),0)
msg = "OUTPUT PATH (Default): %s"
if out path != fnc out[inputs.index("out path")]:
msg = "OUTPUT PATH (Modified): %s"
if verbose: print msg % out path
if verbose: print "SHARED PATH: %s" % shared path

pick dirs = define dirs()

msg = pick dirs.make pick("standard")

dirs set = pick dirs.selection

need dirs = ["%s%s" % (out path,x) for x in dirs_ set]
(out_path,"figs/maps/global/"))

(out path,"figs/maps/global/annual/"))
(out path,"figs/pdfs/global/"))
(out_path,"figs/pdfs/global/annual/"))

oe

need dirs.append("%s%s"
need dirs.append("%s%s"
need dirs.append("%s%s"
need dirs.append("%s%s"

o0 o° o°

for ndir in need dirs:

Installing MCMS - 97

if not os.path.exists(ndir):
try:
os.mkdir (ndir)
if verbose:
print "\tMade: %s" % ndir
except:
sys.exit ("ERROR: creating %s" % ndir)

msg = "SOURCE YEARS (Modified): %s"

if not over write_ years:
over write years = fnc out[inputs.index("super years")]
over write years = [int(over write years[0]),int(over write years[1])]
msg = "SOURCE YEARS (Default): %s"

super years = over write years

Delete the rest
del fnc out

Pick data source see defs files in /cfg
pick defs = define defs()

msg = pick defs.make pick(model)

if verbose: print msg

defs set = pick defs.selection

start year = int(super years[0])
end year = int(super years[l])

Installing MCMS - 98

years = range(super years[0],super years[1l]+1)

clim tag = "%04d_%04d" % (start year,end year)

header = "mcms %s %s " % (model,clim tag)

centers file = "%$s%scenters.txt" % (out path,header)

dumped centers file = "%s%sdumped centers.txt" % (out path,header)

tracks file = centers file.replace('"centers","tracks")

if verbose:
print "CENTERS_FILE: %s" % centers file
print "DUMPED CENTERS FILE: %s" % dumped centers file
print "TRACKS FILE: %s" % tracks_file

Name for new time dat file
if ensemble:
get time dat = "time dat %s %s" % (experiment,ensemble)
else:
if experiment:
get time dat

oo

"time dat %s" (experiment)

else:

get time dat = "time dat"

Test to see if already get time dat defined
gf = shared path+get time dat+".pz"
fnc_out,inputs = InjestSetup(gf,4)
super time data = fnc out[inputs.index("super time data")]
fnames = super time data.keys()
if month sort order:

fnames = sorted(fnames,key = lambda fnames: (break fname(fnames)[0],

month sort order[break fname(fnames)[1]]))

else:

Annual Files

Installing MCMS - 99

fnames = sorted(fnames,key = lambda fnames: (break fname(fnames)[0],
break fname(fnames)[1]))
years = range(super years[0],super years[-1]+1)

uci stamps = []
adates = []
tsteps = 0

for fn in fnames:
if break fname(fn)[0] in years:
uci stamps.extend(super time data[fn]['uci stamps'])
adates.extend(super time data[fn]['adates'])
tsteps += super time data[fn]['tsteps']
del super time data
del fnc out

e
Extra Settings Set

B e e e e e e
msg = '\n%s\n%40s\n%s\n' % (dotline,"Extra Settings Set",dotline)

if verbose: print msg

What sort of figures (png faster, eps/pdf better quality)
pick figure = define figure()

msg = pick figure.make pick("png")

if verbose: print msg

fig format = pick figure.selection

Store tracking stats and make plots

save_stats = 0 save tracks to file, no stats or plots

1 save tracks to file, make stats and plots

2 to not save tracks to file... just stats and plots
save_stats =1

if save stats == 2:

Installing MCMS - 100

print "\t\tWarning not Saving Tracks to File!"
msg = 'save stats = %d' % save_ stats
if verbose: print msg

Save track finding plots (requires matplotlib, also doubles or more memory
footprint). Need this on to save filter specfic netcdf files.

1 plots and netcdf

#
#
save plots = 0 skip
#
2 just netcdfs

save_plots = 2
msg = 'save plots = %d' % save plots
if verbose: print msg

Halt program on error or just warn?
exit on error =1

msg = 'exit on error = %d' % exit on_error
if verbose: print msg

#
Override values from mcms_ setup.py
#

Match RAIBLE et. all 2008
#defs set['max cyclone speed']= 42.0
#defs set['age limit'] = 72.0

Use hotspot file: After a mcms center finding is run it might be that some
locations exhibit unrealistically high center counts (hotspots). Once
identified the option exists to re-run center counting and either treating
these hotspots (and also 8 neighbors) to the extra checks for troubled centers
or simple discard them outright. The concern here is that if noise causes a
persistent error in the SLP field in a location that hotspot might mask out

H* o W K H

Installing MCMS - 101

all nearby legitimate cyclone centers via the regional minimum tests. Also
latter with tracking a hotspot can force passing tracks always vier over
this spot.

use hotspot
0 ignore
1 add to troubled (screen)
Include the 8 surrounding grids for each hotspot as insurance.
use halo =
0 ignore
1 add to troubled

HFoFH O HOH HHHH KK

use hotspot = 0
use_halo = 0
if use hotspot:
import cPickle
import gzip
hfile = "%s%s_hotspots.pz" % (shared path,model)
in hot spots,in halo,in troubled hot spots,in troubled halo = cPickle.load(
gzip.open(hfile))
discard hot spots = []
screen_hot spots = []
if use hotspot ==
Everything added to screen
screen_hot spots = in_hot spots
screen_hot spots.extend(in_ troubled hot spots)
if use halo:
screen_hot spots.extend(in halo)
screen_hot spots.extend(in_ troubled halo)

Check for graphics programs
The psrose plotting program from the GMT (The Generic Mapping Tools,

Installing MCMS - 102

http://gmt.soest.hawaii.edu/) project provides a much better wind
rose plot than that from the matplotlib plotting package that is generally
used by the MCMS project.

psrose = Is It Available("psrose")

if not psrose:
msg = "\n\t\tWarning: GMT (The Generic Mapping Tools) not found.
msg += "Some plots will not be made."

print msg

try:
import matplotlib

except ImportError:
print "\n\t\tWarning: matplotlib not available. Disabling plotting altogether."
save plots = 0

Installing MCMS - 103

Appendix: Tracking Diagnostics

Example diagnostic output from mcms_track_finder.py

Created: October 23, 2012
Updated: October 23, 2012

mcms_nra2_1979_2012_tracks_report.txt

Total Centers Read: 2066831

Total Centers Saved: 1274797 (61.68%)

Total Tracks: 97980

Discards:
199844 (9.67%) Failed trackable center
335834 (16.25%) Failed track lifetime filter
115722 (5.60%) Failed track travel filter
57839 (2.80%) Failed track minimum SLP filter
82795 (4.01%) Failed extratropical track filter

Installing MCMS - 104

Example diagnostic netCDF files created by mcms_track_finder.py when save_plots is used.

A set of files summerizing the dissimularity score and each of its compoentes.
/OUTPUT HOME/netcdfs/
nra2_ tf ave Dscore_ 1979 2012.nc
nra2 tf ave Dscore Unused 1979 2012.nc
nra2 tf ave Dscore Used 1979 2012.nc
nra2 tf ave CisB 1979 2012.nc
nra2 tf ave CisG 1979 2012.nc

Installing MCMS - 105

nra2_tf ave_StheC 1979 2012.nc

A set of files summerizing the average track bearing, center count and whether a track ever touches a troubled grid.
/OUTPUT HOME/netcdfs/
nra2 tf ave Bearing 1979 2012.nc
nra2 tf ave Ccount 1979 2012.nc
nra2_tf touch_concerns annual 1979 2012.nc

A set of files summerizing the effect of each filter (by season, also as relative frequency).
/OUTPUT HOME/netcdfs/
nra2 tf passed annual 1979 2012.nc
nra2 tf freq passed annual 1979 2012.nc
nra2 tf passed djf 1979 2012.nc
nra2 tf lifetime annual 1979 2012.nc
nra2_tf minslp annual 1979 2012.nc
nra2_ tf trackable annual 1979 2012.nc
nra2 tf tropical annual 1979 2012.nc
nra2 tf travel annual 1979 2012.nc

The figure above is an exmaple of the short of information contained in these files.

Caption: The net effect of filtering during the track finding part of the analysis. Each panel is scaled to show the per centage of all center finding centers that are excluded
by each filter. Shown from left to right, top to bottom are the following: a) The net effect of all filters, b) The impact of excluding wholly tropical tracks (never moving poleward
of 15°). ¢) The impact of excluding under-mobile tracks (travel <200 km). d) The impact of excluding tracks whose minimum lifetime SLP was greater than 1010 hPa. e) The
impact of excluding tracks lasting lest than 24 hours. f) Centers for which no track can be formed, either because the section of another track left if orphaned or because no
suitable center could be found at all.

Installing MCMS - 106

Rose Diagrams

If the Generic Mapping Tools (GMT) are installed MCMS will creae a set of rose diagrams detailing the bearing of the cyclone tracks it finds.

Caption: Polar histogram of the relative frequency distribution for candidate track segments (direction of travel) used in StheC calculations. Panel a) shows the implied
bearing of candidates not co-located with troubled/problematic (i.e., high or steep topography) grids, while panel b) shows cases where one or both ends of the track
segments involves a problematic grid. Note these histograms cover all seasons and hemispheres.

Installing MCMS - 107

http://gmt.soest.hawaii.edu/

Appendex: rf_nra2_af.py

Example resource file for mcms_attribute_finder.py

Created: October 23, 2012
Updated: October 23, 2012

#!/usr/bin/env python -tt
Default run file template for mcms_track finder
Create from a template via:
python mcms attribution finder.py -c rf files/rf model af.py
Input:
None
Output:

Various python data structures.

Examples:

AAAAAAAA

Notes/Warnings:

AAAAAAAAAAAAAA

Author: Mike Bauer <mbauer@giss.nasa.gov>

Log:

Installing MCMS - 108

2011/01 MB - File created
2012/10 MB - Updated

Standard library imports
import sys

import os

import fnmatch

MCMS module imports: Need to have mcms in your PYTHONPATH environment variable!
from cfg import define source
from cfg import define figure
from cfg import define dirs

from cfg import define defs

from cfg import define vars

from cfg import ensure path

from util import FileExists

from util import organize data
from util import query yes no
from util import InjestSetup
from util import Is It Available

Modify these to set the paths for the data and MCMS output
import output root
import data root

verbose = 0

dotline = "$s" % ("-"*40)

msg = '\n%s\n%40s\n%s\n' % (dotline,"Main Settings Set",dotline)
if verbose: print msg

over write years =
months = {l1: 'January', 2: 'February', 3: 'March', 4: 'April', 5:

May ,

Installing MCMS - 109

6: 'June', 7: 'July', 8: 'August', 9
11: 'November', 12: 'December'}

'September', 10: 'October',

Pick data source see files in /cfg
See cfg/mcms_source base defs.py

pick source = define source()

msg = pick source.make pick("nra2")

if verbose: print msg

model = pick source.selection

model def = pick source.selections[model][0]

Import the base directories for the data and MCMS output
See rf files/output root.py
rf files/data_root.py

if hasattr(output root, '$s_root'
oroot = getattr(output root,
else:

% model):

'%s_root' % model)
oroot = output root.root

if hasattr(data _root,'%s root' % model):

droot = getattr(data_ root,
else:

%s_root' % model)

droot = data root.root
Can manually override these here

#oroot =
#droot = ""

Installing MCMS - 110

Full path to the root directory where pick specific output will be stored.
If multiple data sets under same model (say GCM runs) add a subdirectory
to the model root. Can be worked with ensembles and experiments within the
same model.

Example:
ensembles = {"control run" : [""],
"Scenario AlB run" : ["E3abaoM20","E3abboM20", "E3abcoM20", "E3abdoM20"],
"Scenario AlB iceMelt run" : ["E3FIBaoM20","E3FIBboM20"]}
blobs = {"control run" : "gissm 20",
"Scenario AlB run" : "gissm 20",
"Scenario AlB iceMelt run" : "gissm 20"}
experiment = "Scenario AlB iceMelt run"
ensemble = ensembles[experiment][0]
blob = blobs[experiment]

Blob represents the sometimes long descriptive name some GCMs add to their
output files (e.g., for the file naming pattern
cam b30.14 37kaDVT T85.cam2.hl1.0531-01-01-PSL.nc
the blob would be
cam b30.14 37kaDVT T85.cam2.hl
which tells mcms that the changeable part of the file name pattern is
.0531-01-01-PSL.nc

FHFoH O H OH W HH H W HHHHHHHHHHHHH

ensemble =
experiment = ""
blob = ""
if ensemble:
subdir = "%s/%s/" % (experiment,ensemble)

else:

Installing MCMS - 111

if experiment:

subdir = "%s/" % (experiment)
else:
subdir = ""
out path = "%s%s%s/" % (oroot,model,subdir)

out path = ensure path(subdir,out path,check exists=0)

slp path = "%s%s/%s" % (droot,model,subdir)
slp path = ensure path(subdir,slp path)

if subdir:
shared path
else:
shared path = "%s files/" % (out path.replace("%$s/" % model,model))
shared path = ensure path(subdir,shared path)

"%s%s files/" % (oroot,model)

Names associated with the netcdf files for the source
See cfg/mcms_ncvars_ base defs.py

source vars = define vars()

msg = source vars.make pick(model)

if verbose: print msg

nc_vars = source vars.selection

break fname = nc_vars['break fname']

month sort order = nc vars['month sort order']

Installing MCMS - 112

the calendar = nc_vars|['calendar']
jd_fake = nc _vars['jd fake']
get time dat = "time dat"

Fast way to do a single year ... by splitting the year into pieces &

work on each subset with a processor. This is generally for debugging
or testing something.

Example:

fast run =1

fast year = 2000

fast run = 0
fast year = 0
if verbose and fast run: print "Fast run mode for %d" % fast year

Skip some some timesteps when reading the SLP data (convert a 3 hourly dataset
into a 6 hourly one). This is generally for debugging or testing something.

Example:

skip hours = ["03","09","15","21"]

o
skip hours = []

o

Over write the default of doing all years located by mcms setup.py
Example:
over write years = [2000,2010]

over write years = []
if fast run:
over write years = [fast year,fast year]

Installing MCMS - 113

fnc out,inputs = InjestSetup("%ss datf.pz" % (shared path),0)
msg = "OUTPUT PATH (Default): %s"
if out path != fnc out[inputs.index("out path")]:
msg = "OUTPUT PATH (Modified): %s"
if verbose: print msg % out path
if verbose: print "SHARED PATH: %s" % shared path

pick dirs = define dirs()

msg = pick dirs.make pick("standard")

dirs set = pick dirs.selection

need dirs = ["%s%s" % (out path,x) for x in dirs_ set]
(out_path,"figs/maps/global/"))

(out path,"figs/maps/global/annual/"))
(out path,"figs/pdfs/global/"))
(out_path,"figs/pdfs/global/annual/"))

oe

need dirs.append("%s%s"
need dirs.append("%s%s"
need dirs.append("%s%s"
need dirs.append("%s%s"

o0 o° o°

for ndir in need dirs:
if not os.path.exists(ndir):

try:
os.mkdir(ndir)
if verbose:

print "\tMade: %s" % ndir

except:

sys.exit ("ERROR: creating %s" % ndir)

Installing MCMS - 114

Updates if needed

msg = "SLP PATH (Default): %s"

check _time = 0

if slp path != fnc out[inputs.index("slp path")]:
msg = "SLP PATH (Modified): %s"
check time =1

if not os.path.exists(slp path):
sys.exit ("ERROR: slp path not found.")

if verbose: print msg % slp path

msg = "SOURCE YEARS (Modified): %s"

if not over write years:
over write years = fnc_out[inputs.index("super years")]
over write years = [int(over write years[0]),int(over write years[1l])]
msg = "SOURCE YEARS (Default): %s"

super years = over write years

Delete the rest

del fnc out

Pick data source see defs files in /cfg
pick defs = define defs()

msg = pick defs.make pick(model)

if verbose: print msg

defs set = pick defs.selection

Installing MCMS - 115

msg = '\n%s\n%40s\n%s\n' % (dotline,"Extra Settings Set",dotline)
if verbose: print msg

What sort of figures (png faster, eps/pdf better quality)
pick figure = define figure()

msg = pick figure.make pick("png")

if verbose: print msg

fig format = pick figure.selection

Set for debugging as multiprocessing doesn't always report why a program hangs.
single processor = 0
if fast run:
single processor = 0
msg = "Warning Running Single Processor Mode!"
if verbose and single processor: print msg

#
Override values from mcms_setup.py
#

Match RAIBLE et. all 2008
#defs set['max _cyclone speed']= 42.0
#defs set['age limit'] = 72.0

Breakdown, mods to print step by step of how MCMS ATT works
breakdown = 1 # plot SLP contours and centers only
breakdown 2 # plot selected contours and centers

breakdown = 0

Special version to plot a match to

Simmonds. Size Changes over the Life of Sea Level Cyclones in the NCEP Reanalysis.
Monthly Weather Review (2000) vol. 128 pp. 4118-4125

simmonds = 0

Installing MCMS - 116

sim year = 1996
if simmonds or breakdown:

super years = [sim year,sim year]
msgb = "Running in Breakdown Mode! Sim year %d"
msgs = "Running in Simmonds Mode! Sim year %d"

if verbose:
if breakdown: print msgb % sim year
if simmonds: print msgbs % sim year

Set this to allow plotting of contour data (for debugging or otherwise)
plot contours = 0
#plot contours = 1
if simmonds or breakdown:
plot contours =1
msg = "Plotting Contours"
if verbose and plot contours: print msg

Save ATT etc using the projection grid (large, high resolution)
save_hi res = 0

msg = "Saving on high resolution grid"

if verbose and save hi res: print msg

Save ATT etc using the data source grid
save _source res = 1
if simmonds:
Turn on for b4 breakdown
save _source _res = 0
if breakdown:
Turn on for b4 breakdown
save _source res = 1
msg = "Saving on data source grid"
if verbose and save source res: print msg

Installing MCMS - 117

Set contour levels and interval
clevs=[940,1040,2]
if breakdown:

clevs=[960,1040,2]

Use a linear contour intervals or non-linear where the interval
falls in half from what clevs[2] uses above 980 hPa.
linear intervals =1
msg = "Using Contours: %s (linear %r)"
if verbose:
print msg % (str(clevs), linear intervals)

projs = ['laea', 'stere', 'aeqd']
pmap = projs[0]

mproj sh = 'sp'+pmap

mproj nh = 'np'+pmap

msg = "Using Map Projection: %s"

if verbose:
print msg % (pmap)

Limit contours to those whose circumference is less than

some set amount. Here we use the circumference of a

small circle on a sphere with the diameter of a set

See make circle v5.py

zonal wave number 4 centered on a latitude of 45 degrees.
#contour limit = 21000.0

zonal wave number 5 centered on a latitude of 45 degrees.
#contour limit = 17000.0

zonal wave number 6 centered on a latitude of 45 degrees.
contour_limit = 14000.0

Installing MCMS - 118

Smooth/interpolate data field by

hemisphere to higher grid density
nxx = 180

nyy = 180

Set the density of the gridids for the final fill, you might
want this to be higher than nxx,nyy because the spacing of
the grids are fixed distance and thus when the fill is moved
to a fixed lon/lat grid at high latitudes you can get skipped
#

fill grids.
gxxX = nyy*2
gyy = nxx*2

Set boundaries for map (set to zero to use defs default)
lat bound = 0

if simmonds or breakdown:
if not breakdown:
lat bound = -30.0
gxx = nyy*l
gyy = nxx*1l

if plot contours:
res = "c"
else:

res = None

Use to plot discarded centers on plots
add dumped = 0
if simmonds or breakdown:
add dumped = 1
if not plot contours:

Installing MCMS - 119

add_dumped = 0
msg = "Plotting Dumped centers"
if verbose and add dumped:
print msg

Create progress files which can used by python util/done.py out path
to check the progress of a run if you cannot use the progress bar
(e.g., remote logging or background process).
progress = 1
if fast run:

progress = 1
if progress:

file list = os.listdir(out path)

file list.sort()

pfiles = [x for x in file list if x.find("progress") != -1]

for p in pfiles:

os.remove(out path+p)

start year = int(super years[0])

end year = int(super years[l])

years = range(start year,end year+l)
nyears = end year-start year+l

clim tag = "%04d-%04d" % (start year,end year)

header = "mcms_%s_ XXXX" % (model)

tail = " tracks.txt"

cut tail = len(tail)

centers file = "%s%s%s" % (out path,header,tail)

dumped centers file = "%s%s_dumped centers.txt" % (out path,header)

if verbose:

Installing MCMS - 120

print "CENTERS FILE: %s" % centers file
if add dumped: print "DUMPED CENTERS FILE: %s" % dumped centers file
if verbose: print msg % repr(super years)

Installing MCMS - 121

Appendex: Attribution Diagnostics

Example diagnostic output from mcms_attribution_finder.py

Created: October 23, 2012
Updated: October 23, 2012

Installing MCMS - 122

Conventions

conventions.ixt
inline.txt

profiling.txt
mcms_code_base.txt

Installing MCMS - 123

Do Do and Fixes

FIXES.txt

Installing MCMS - 124

	Installing MCMS
	Table of Contents
	MCMS
	Overview

	Installing MCMS (Read)
	Basic Requirements (Read)
	Basic Requirements

	Acquiring the Codebase (Read)
	Reading MCMS datasets
	Basic formatting
	Formatting of "_tracks.txt" files
	Using MCMS provides tools to read "_tracks.txt" files

	Installing MCMS (Make)
	Basic Requirements (Make)
	Basic Requirements

	Acquiring the Codebase (Make)
	Clone the Repository
	File Structure
	Working with the Repository

	Configure Setup
	Preparations
	Configuration
	Debugging tips

	Do Setup
	Configure Center Finding
	Do Center Finding
	Detecting and Dealing with Hotspots
	Configure Tracking
	Do Tracking
	Configure Attribution
	Do Attribution
	Determine Intensity
	Reformat Output

	Supplemental
	Appendix: rf_nra2_setup.py
	rf_nra2_setup.py

	Appendix: setup_logfile.txt
	setup_logfile.txt
	merrac_tropical_land_mask
	merrac_smask
	merrac_troubled_grids
	merrac_regional_radius_example_nh

	Appendix: rf_nra2_cf.py
	rf_nra2_cf.py

	Appendix: Center Finding Diagnostics
	mcms_nra2_2000_cf_base_report.txt
	mcms_nra2_2000_centers_report.txt
	mcms_nra2_center_final_report_1979-2012.txt
	Center Finding Diagnostic netCDF files

	Appendix: rf_nra2_tf.py
	rf_nra2_tf.py

	Appendix: Tracking Diagnostics
	mcms_nra2_1979_2012_tracks_report.txt
	Rose Diagrams

	Appendex: rf_nra2_af.py
	Appendex: Attribution Diagnostics
	Conventions
	Do Do and Fixes

